

Free maths self-help revision © copyright itute 2013

Graphs of transformed functions

All functions or relations can be changed by one or a combination of the following transformations.
Vertical dilation of function $y=f(x)$:
$y=f(x) \rightarrow \frac{y}{A}=f(x)$ where $A>0, \therefore \quad y=A f(x)$
For $0 \leq A<1$, the graph of $y=f(x)$ is compressed towards the x-axis to give it a wider appearance; for $A>1$, it is stretched away from the x-axis to give it a narrower appearance.
A is called the dilation factor.
Other ways to say vertical dilation are:

- dilation parallel to the y-axis
- dilation from (or towards) the x-axis

Example 1 Compare the graphs of the transformed functions $y=\frac{1}{2}|x|$ and $y=2|x|$ with the graph of the original function $y=|x|$.

Horizontal dilation of function $y=f(x)$:
$y=f(x) \rightarrow y=f\left(\frac{x}{n}\right)$ where $n>0$
For $0<n<1$, the graph of $y=f(x)$ is compressed towards the y-axis to give it a narrower appearance; for $n>1$, it is stretched away from the y-axis to give it a wider appearance.
The dilation factor is n for this transformation.
Other ways to say horizontal dilation are:

- dilation parallel to the x-axis
- dilation from (or towards) the y-axis

Example 2 Compare $y=\sqrt{0.5 x}$ and $y=\sqrt{2 x}$ with $y=\sqrt{x}$.

Reflection of function $y=f(x)$ in the x-axis:
$y=f(x) \rightarrow-y=f(x), .: y=-f(x)$

Example 3 Compare $y=-\log _{e} x$ with $y=\log _{e} x$.

Reflection of function $y=f(x)$ in the y-axis:
$y=f(x) \rightarrow y=f(-x)$
Example 4 Compare $y=e^{-x}$ with $y=e^{x}$.

Vertical translation of function $y=f(x)$ by c units:
$y=f(x) \rightarrow y \pm c=f(x)$ where $c>0, .: y=f(x) \mp c$
The + and -operations correspond to downward and upward translations respectively in $y \pm c=f(x)$, but upward and downward translations respectively in $y=f(x) \mp c$.

Example 5 Compare $y=\cos x+3$ and $y=\cos x-1$ with $y=\cos x$.

Horizontal translation of function $y=f(x)$ by b units:
$y=f(x) \rightarrow y=f(x \pm b)$, where $b>0$
The + and -operations correspond to left and right translations respectively.

After translations (horizontal and/or vertical), the size and shape remain the same as the original.

Example 6 Compare $y=\sin \left(x-\frac{\pi}{3}\right)$ and $y=\sin x$.

Sequence of transformations

If a transformed function is the result of a sequence of the above transformations, it would be easier to recognise what the transformations are by expressing the function in the form

$$
y= \pm A f\left(\pm \frac{1}{n}(x \pm b)\right) \pm c
$$

To sketch the transformed function from the original function, always carry out the translations last when the transformed function is written in the above form.
Example 7 Sketch $y=3(x+4)^{5}-2$.
This function is the result of a combination of transformations of $y=x^{5}$. It involves a vertical dilation by a factor of 3 , and translations of 4 left and 2 down. The stationary point of inflection changes from $(0,0)$ to $(-4,-2)$.

Example 8 Sketch $y=-2 \sin \left(\pi x-\frac{\pi}{2}\right)-4$ for $0 \leq x \leq 2$.
Express the function as $y=-2 \sin \pi\left(x-\frac{1}{2}\right)-4$.
This function is the result of a sequence of transformations of $y=\sin x$. The amplitude changes from 1 to 2 (note: not -2) and the period changes from 2π to $T=\frac{2 \pi}{\pi}=2$. They correspond to a vertical dilation of the function by a factor of 2 and a horizontal dilation by a factor of $\frac{1}{\pi}$ respectively. There is a reflection in the x-axis followed by translations of $\frac{1}{2}$ right and 4 down.

Example 9 Sketch $y=\frac{-0.4}{(x+3)^{2}}+1$.
This function is the result of a sequence of transformations of $y=\frac{1}{x^{2}}$. It involves a reflection in the x-axis and a vertical dilation by a factor of 0.4 , and then translations 3 left and 1 up. The function has $x=-3$ and $y=1$ as its asymptotes.

Example 10 Sketch $y=-\left|1-\frac{x}{2}\right|+1$.
It is the result of a sequence of transformations of $y=|x|$.
Firstly express it in the form $y= \pm A f\left(\pm \frac{1}{n}(x \pm b)\right) \pm c$.
$y=-\frac{1}{2}|2-x|+1=-\frac{1}{2}|-(x-2)|+1=-\frac{1}{2}|x-2|+1$.
The sequence of transformations is:
Reflection in the x-axis; vertical dilation by a factor of $\frac{1}{2}$; translations 2 right and 1 up. The vertex is $(2,1)$.

Implicit form

A function or relation can be written in implicit form, e.g.
$\frac{1}{2}(x-1)^{2}-3 \sqrt{-y+2}=3$.
The general rules for transformations are:
(1) Change x to $-x$ for reflection in the y-axis.
(2) Change y to $-y$ for reflection in the x-axis.
(3) Change x to $\frac{x}{a}$ for dilation from the y-axis by a factor of a.
(4) Change y to $\frac{y}{a}$ for dilation from the x-axis by a factor of a.
(5) Change x to $x-a$ for horizontal translation by $+a$ units.
(6) Change y to $y-a$ for vertical translation by $+a$ units.
*These transformations can be carried out in any order.
Example 11 The graph of $y=\frac{1}{1-x}$ undergoes the following transformations: Translate upwards by 2 units, reflect in the x axis and then dilate vertically by a factor of 0.5 . Write down the equation of the transformed function.
$y=\frac{1}{1-x} \rightarrow y-2=\frac{1}{1-x} \rightarrow-y-2=\frac{1}{1-x} \rightarrow-2 y-2=\frac{1}{1-x}$
$\therefore y=\frac{1}{2(x-1)}-1$
Example 12 Find the equation of the transformed function when $y=1-\sqrt{2-x}$ undergoes the sequence of transformations:
(1) downward translation by 2 units, (2) horizontal dilation by a factor of 2 and (3) reflection in the y-axis.
$y=1-\sqrt{2-x} \rightarrow y+2=1-\sqrt{2-x} \rightarrow y+2=1-\sqrt{2-\frac{x}{2}}$
$\rightarrow y+2=1-\sqrt{2-\frac{-x}{2}}$, i.e. $\rightarrow y=-1-\sqrt{2+\frac{x}{2}}$
Questions: Next page

Q2 Starting from $y=f(x)$, sketch the graph $y=g(x)$.
a $f(x)=2 e^{x}-2, g(x)=\frac{1}{2}(f(x)+2)$

Q3 Sketch $y-1=\frac{1}{x-1}$ by transformations. Clearly show the asymptotes.

Q5 $y=2|1+x|-1$ undergoes the following transformations in the order shown: (1) Translate to the left by 1 unit
(2) Reflect in the y-axis (3) Dilate horizontally by a factor of
0.5 . Find the equation of the transformed function.

Q7 $\sqrt{y+1}=1-\frac{x}{2}$ undergoes the following transformations in the order shown: (1) Dilate horizontally by a factor of 0.5 .
(2) Reflect in the y-axis (3) Translate to the right by 1 unit
(4) Translate upward by 1 unit. Find the equation and sketch the graph of the transformed function.

Q2b $f(x)=\sin \left(\frac{x}{2}\right), g(x)=2 f(x+\pi)-2$

Q4 Sketch $y=2-\frac{1}{(x+2)^{2}}$ by transformations. Clearly show the asymptotes.

Q6 $y^{2}=2\left(x-\frac{1}{2}\right)$ undergoes the following transformations in the order shown: (1) Translate to the right by 1 unit
(2) Reflect in the x-axis (3) Dilate vertically by a factor of 0.5 . Find the equation of the transformed function.

Numerical, algebraic and worded answers:
1a. Vert. dil. by factor 2 , right 1 down 4.
1b. Vert. dil. by factor 2 , right 3 up 4. 1c. Reflected in the x-axis, right 4.
1 d. Reflected in the x-axis, hori. dil. by factor $1 / 2$, vert. dil. by factor 2 , up 2 .
3. Asymptotes: $x=1, y=1$
4. Asymptotes: $x=-2, y=2$
5. $y=4|1-x|-1$
6. $y^{2}=\frac{1}{2}\left(x-\frac{3}{2}\right)$
7. $x=\sqrt{y}$, the right half of parabola $y=x^{2}$

