

Free maths self-help revision © copyright itute 2013

Power functions $y = x^n$, for $n \in Q$ (set of rational numbers)

The graph of y = x is a straight line through the origin (0,0). Domain: R; range: R.

The graphs of odd-power functions, e.g. $y = x^3$ and $y = x^5$ have a stationary point of inflection at (0,0).

Domain: R; range: R.

The graphs of even-power functions, e.g. $y = x^2$ and $y = x^4$ have a turning-point at (0,0).

They show symmetry under a reflection in the y-axis. .: the yaxis, i.e. the line x = 0 is called the axis of symmetry. Domain: R; range: $[0,\infty)$.

The function $y = x^{\frac{1}{2}}$ can be written as $y = \sqrt{x}$. It is undefined for x < 0. It has an end point at (0,0). Domain: $[0,\infty)$; range: $[0,\infty)$.

The function $y = x^{\frac{1}{3}}$ can be expressed as $y = \sqrt[3]{x}$. It has a vertical tangent at (0,0). Domain: R; range: R.

The graph of $y = x^{-1}$ (or $y = \frac{1}{x}$) consists of two branches, one in the first quadrant and the other in the third quadrant. The axes of symmetry are lines $y = \pm x$. The function shows the following asymptotic behaviours: $As \ x \to -\infty, \ y \to 0^-$; $as \ x \to +\infty, \ y \to 0^+$. $\therefore y = 0$ is the horizontal asymptote of the function. As $x \to 0^-$, $y \to -\infty$; as $x \to 0^+$, $y \to +\infty$. $\therefore x = 0$ is the vertical asymptote. Domain: $R \setminus \{0\}$; range: $R \setminus \{0\}$.

The graph of $y = x^{-2}$ (or $y = \frac{1}{x^2}$) also has two branches, one in the first quadrant and the other in the second quadrant. The line x = 0 is the axis of symmetry.

The function shows the following asymptotic behaviours:

As $x \to -\infty$, $y \to 0^+$; as $x \to +\infty$, $y \to 0^+$.

 \therefore y = 0 is the horizontal asymptote of the function.

As $x \to 0^-$, $y \to +\infty$; as $x \to 0^+$, $y \to +\infty$. $\therefore x = 0$ is the vertical asymptote.

Example 1 Find the coordinates of the intersection(s) of $y = \frac{1}{x^2}$ and $y = x^2$ algebraically.

Substitution: $x^2 = \frac{1}{x^2}$ for $x \neq 0$, .: $x^4 = 1$, $x = \pm 1$ and $y = x^2 = 1$.

The intersections are (-1,1) and (1,1).

Example 2 Find the coordinates of the intersection(s) of $y = x^{\overline{3}}$ and $y = x^{\overline{3}}$ algebraically.

Substitution: $x^3 = x^{\frac{1}{3}}$.

Take the cube of both sides: $(x^3)^3 = (x^{\frac{1}{3}})^3$, $\therefore x^9 = x$,

 $x^9 - x = 0$, $x(x^8 - 1) = 0$, $\therefore x = 0$ or ± 1 and the corresponding *y*-coordinates are 0, ± 1 .

The intersections are (-1,-1), (0,0) and (1,1).

Exponential functions $y = a^x$ where $a \in R^+$

For a > 1, the graphs of functions with equation $y = a^x$ have the same shape and the same y-intercept (0,1).

Asymptotic behaviour: As $x \to -\infty$, $y \to 0^+$, the same horizontal asymptote y = 0 for the functions.

 a^{x} is always > 0. Domain: R and range: R^{+} .

For 0 < a < 1, the graphs of $y = a^x$ have the same shape and the same y-intercept (0,1).

Asymptotic behaviour: As $x \to +\infty$, $y \to 0^+$, the same horizontal asymptote y = 0 for the functions.

 a^x is always > 0. Domain: R and range: R^+ .

Example 3 Show that the graphs of $y = a^x$ and $y = \left(\frac{1}{a}\right)^x$ for

 $a \in R^+$ are reflections of each other in the y-axis.

 $y = \left(\frac{1}{a}\right)^x = \left(a^{-1}\right)^x = a^{-x}$, the negative sign before *x* means $y = a^{-x}$ is the reflection of $y = a^x$ in the *y*-axis and vice versa.

Logarithmic functions $y = \log_a x$ where $a \in R^+$

For a > 1, e.g. the logarithmic functions $y = \log_e x$ ($\ln(x)$ on your calculators) and $y = \log_{10} x$ ($\log(x)$ on calculators) have the same shape and a common x-intercept (1,0). They are undefined for $x \le 0$. Both functions have a negative value for 0 < x < 1 and a positive value for x > 1.

Asymptotic behaviour: As $x \to 0^+$, $y \to -\infty$, the same vertical asymptote x = 0. Domain: R^+ and range: R.

For 0 < a < 1, e.g. $y = \log_{\frac{1}{e}} x$ and $y = \log_{\frac{1}{10}} x$ have the same shape and a common x-intercept (1,0). They are undefined for $x \le 0$. Both functions have a positive value for 0 < x < 1 and a negative value for x > 1.

Asymptotic behaviour: As $x \to 0^+$, $y \to \infty$, the same vertical asymptote x = 0. Domain: R^+ and range: R.

Example 4 Show that the graphs of $y = \log_{\frac{1}{a}} x$ and $y = \log_{a} x$ are reflections of each other in the *x*-axis for $a \in R^{+}$.

$$y = \log_{\frac{1}{a}} x$$
, $\therefore x = \left(\frac{1}{a}\right)^y = \left(a^{-1}\right)^y = a^{-y}$, $\therefore -y = \log_a x$

The negative sign before y means $y = \log_{\frac{1}{a}} x$ is the reflection of $y = \log_{a} x$ in the x-axis and vice versa.

Example 5 What do you notice about the graphs of $y = a^x$ and $y = \log_a x$ for $a \in R^+$?

Sketch the two graphs on the same axes of *the same scale*.

They are reflections of each other in the line y = x. Any two functions with this property are **inverses** of each other.

Example 6 Are
$$y = x^5$$
 and $y = x^{\frac{1}{5}}$ inverses of each other?

Questions: Next page

Q1 Sketch the graphs of x^2 , x^4 and x^6 on the same set of	
axes.	Q2 Sketch the graphs of x^n for $n = 1$, 3 and 5 on the same set of axes.
O3 Refer to the even-power functions in O1 and the odd-	
power functions in Q2. Which set of power functions shows symmetry under reflection in the y-axis?	Q4 Find the coordinates of the intersection(s) of $y = x^4$ and $y = x^{\frac{1}{4}}$.
Q5 Sketch the graphs of the inverse of x^n for $n = 2$ and 4 on the same set of axes.	Q6 Sketch the graphs of the inverse of x^n for $n = 3$ and 5 on the same set of axes.
Q7 Refer to Q5. Find the equation and domain of each inverse.	Q8 Sketch the graphs of 2^x and 5^x on the same set of axes. State the domain and range of each one.
Q9 Write down the functions which are the reflections of 2^x and 5^x in the line $y = x$.	Q10 Write down the functions which are the reflections of 2^x and 5^x in the <i>y</i> -axis.
Q11 Sketch the graphs of $\log_2 x$ and $\log_{\frac{1}{2}} x$ on the same set of axes. Comment on the two graphs.	Numerical, algebraic and worded answers: 3. Even-power functions 4. (0,0), (1,1) 7. $y = x^{\frac{1}{2}}$, domain $[0,\infty)$; $y = x^{\frac{1}{4}}$, domain $[0,\infty)$ 8. Both have the same domain <i>R</i> , range $(0,\infty)$ 9. $\log_2 x$, $\log_5 x$ 10. 2^{-x} , 5^{-x} 11. They are reflections of each other in the <i>x</i> -axis.