

Free maths self-help revision © copyright itute 2013

Composition of functions

More functions can be generated by addition/subtraction, multiplication/division and transformations of functions. Composition of functions creates new functions called composite functions.
Given two functions f and g, f composition g, denoted as $f \circ g$, is defined by $f(g(x))$ when the range of g is a subset of the domain off, i.e. $r_{g} \subseteq d_{f}$.

Example 1 Given $f(x)=\log _{e}(x)$ and $g(x)=x^{2}+1$, find the rule for $f \circ g$ and state its domain and range.

$$
f \circ g(x)=f(g(x))=\log _{e}(g(x))=\log _{e}\left(x^{2}+1\right)
$$

The maximal domain of f is $(0, \infty), .: x^{2}+1>0$ and it is true for any $x \in R \ldots$ the domain of $f \circ g$ is R.
Since $x^{2}+1 \geq 1$,.: the lowest value of $f \circ g$ is $\log _{e} 1=0$, .: the range of $f \circ g$ is $[0, \infty)$.

Example 2 Given $f:[2,10) \rightarrow R, f(x)=\log _{e}(x)$ and $g: D \rightarrow R, g(x)=x^{2}+1$, find the maximal domain D such that $f \circ g$ is defined and state the range of $f \circ g$.

The domain of f is $[2,10), .: 2 \leq x^{2}+1<10,1 \leq x^{2}<9$ $\therefore-3<x \leq-1$ or $1 \leq x<3$
$\therefore D$ is $(-3,-1] \cup[1,3)$ which is also the domain of $f \circ g$.
The range of $f \circ g$ is $\left[\log _{e} 2, \log _{e} 10\right)$.

Example 3 Given $f(x)=e^{x}$ and $g(x)=x^{2}-4 x-5$, find the rule for $g \circ f$ and state its domain.
$g \circ f(x)=g(f(x))=\left(e^{x}\right)^{2}-4 e^{x}-5=e^{2 x}-4 e^{x}-5$ r_{f} is $(0, \infty), d_{g}$ is $R, .: r_{f} \subseteq d_{g}$: the domain of f is also the domain of $g \circ f$, i.e. R.

Example 4 Given $f(x)=|x|$ and $g(x)=\sin x$, find (a) $f \circ g$ and (b) $g \circ f$. Sketch the graph and state the range in each case.
(a) $f \circ g(x)=f(g(x))=f(\sin x)=|\sin x|$. The range is $[0,1]$.

(b) $g \circ f(x)=g(f(x))=g(|x|)=\sin |x|$. The range is $[-1,1]$.

Example 5 (2006 VCAA Sample Exam 2 Version 2)
Find the maximal domain, D, of the function $f: D \rightarrow R$ with rule $f(x)=\log _{e}(|x|)+1$.
$|x|>0$, i.e. $x \in R \backslash\{0\}$, .: D is $R \backslash\{0\}$.

Example 6 (2007 VCAA Exam 2) Let $g(x)=x^{2}+2 x-3$ and $f(x)=e^{2 x+3}$. Find $f(g(x))$.
$f(g(x))=f\left(x^{2}+2 x-3\right)=e^{2\left(x^{2}+2 x-3\right)+3}=e^{2 x^{2}+4 x-3}$
Example 7 (2007 VCAA Exam 2) The graphs of $y=f(x)$ and $y=g(x)$ are shown below. Sketch the graph of $y=f(g(x))$.

Let $f(x)=x(x-2)$ and $g(x)=-|x|$.
$y=f(g(x))=-|x|(-|x|-2)=|x|(|x|+2)$
For $x \geq 0, y=x(x+2)$; for $x<0, y=-x(-x+2)=x(x-2)$

Example 8 (2010 VCAA Exam 2) Given $f(x)=\frac{1}{2} e^{3 x}$ and $g(x)=\log _{e}(2 x)+3$, find $g(f(x))$ and its maximal domain.
$g(f(x))=g\left(\frac{1}{2} e^{3 x}\right)=\log _{e}\left(2 \times \frac{1}{2} e^{3 x}\right)+3$
$=\log _{e} e^{3 x}+3=3 x+3$.
The range of f is a subset of the domain of g, i.e. $r_{f} \subseteq d_{g}$, .: the maximal domain of $g(f(x))$ is the maximal domain of f, i.e. R.

Example 9 Let $f:(-1, \infty) \rightarrow R, f(x)=p-x^{2}$ and $g:(-\infty, 2] \rightarrow R, g(x)=\frac{1}{(x-3)^{2}}-p$, where $p>0$. Find the values of p such that both $f \circ g$ and $g \circ f$ are defined.
$d_{f}=(-1, \infty), r_{f}=(-\infty, p]$, why?
$d_{g}=(-\infty, 2], r_{g}=(-p, 1-p]$, why?
For $f \circ g$ to be defined, $r_{g} \subseteq d_{f}$, i.e. $(-p, 1-p] \subseteq(-1, \infty)$
$. \therefore-p \geq-1$, i.e. $p \leq 1$
For $g \circ f$ to be defined, $r_{f} \subseteq d_{g}$, i.e. $(-\infty, p] \subseteq(-\infty, 2]$
$\therefore p \leq 2$
\therefore for both to be defined, $p \leq 1$ AND $p \leq 2, .: 0<p \leq 1$

Functional equations

$2 x^{2}-3 y=5$ is an equation in x and y.
$3 f(x)+(f(y))^{2}-1=0$ is a functional equation involving $f(x)$ and $f(y)$.

Example 10 Show that $f(x)=x+\frac{1}{x}$ satisfies the functional equation $f(u v)+f\left(\frac{u}{v}\right)=f(u) f(v)$ for $u, v \neq 0$.
$f(x)=x+\frac{1}{x}, f(u v)=u v+\frac{1}{u v}, f\left(\frac{u}{v}\right)=\frac{u}{v}+\frac{v}{u}$
$\therefore f(u v)+f\left(\frac{u}{v}\right)=u v+\frac{1}{u v}+\frac{u}{v}+\frac{v}{u}$
$f(u) f(v)=\left(u+\frac{1}{u}\right)\left(v+\frac{1}{v}\right)=u v+\frac{1}{u v}+\frac{u}{v}+\frac{v}{u}$
$\therefore f(u v)+f\left(\frac{u}{v}\right)=f(u) f(v)$.
Example 11 Given $f(x)=\log _{e} x+1$, show that
$f\left(\frac{x}{y}\right)-1=f(x)-f(y)$.
$f(x)=\log _{e} x+1, f(y)=\log _{e} y+1$
$\therefore f(x)-f(y)=\log _{e} x-\log _{e} y=\log _{e} \frac{x}{y}$
$f\left(\frac{x}{y}\right)-1=\log _{e} \frac{x}{y}+1-1=\log _{e} \frac{x}{y} \quad \therefore f\left(\frac{x}{y}\right)-1=f(x)-f(y)$.

Example 12 (2008 VCAA Exam 2)

Let $f: R \rightarrow R, f(x)=e^{x}+e^{-x}$. For all $u \in R$, express $f(2 u)$ in terms of $f(u)$.

$$
\begin{aligned}
& f(x)=e^{x}+e^{-x}, .: f(2 u)=e^{2 u}+e^{-2 u}=e^{2 u}+2+e^{-2 u}-2 \\
& =\left(e^{u}+e^{-u}\right)^{2}-2=(f(u))^{2}-2
\end{aligned}
$$

Example 13 (2009 VCAA Exam 2) Let $f: R \rightarrow R, f(x)=x^{2}$. Which one of the following is not true? A. $f(x y)=f(x) f(y)$
B. $f(x)-f(-x)=0$
C. $f(x-y)=f(x)-f(y)$
D. $f(2 x)=4 f(x)$
E. $f(x+y)+f(x-y)=2(f(x)+f(y))$
$f(x-y)=(x-y)^{2}=x^{2}+y^{2}-2 x y, f(x)-f(y)=x^{2}-y^{2}$
$\therefore f(x-y) \neq f(x)-f(y)$
$\therefore \mathrm{C}$ is not true.
Example 14 (2006 VCAA Exam 2) The function f satisfies the functional equation $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ where x and y are any non-zero real numbers. Which one of the following rules is a possibility for the function? A. $f(x)=\log _{e}|x| \quad$ B. $f(x)=\frac{1}{x}$
C. $f(x)=2^{x}$
D. $f(x)=2 x$
E. $f(x)=\sin (2 x)$
$f(x)=2 x$ is a possible rule.
Check: $f\left(\frac{x+y}{2}\right)=2\left(\frac{x+y}{2}\right)=x+y$
$\frac{f(x)+f(y)}{2}=\frac{2 x+2 y}{2}=x+y$
$\therefore f(x)=2 x$ satisfies $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$.
Example 15 (2007 VCAA Exam 2) The function f satisfies the functional equation $f(f(x))=x$ for the maximal domain of f. Which of the following rules is a possibility for f ?
A. $f(x)=x+1$
B. $f(x)=x-1$
C. $f(x)=\frac{x-1}{x+1}$
D. $f(x)=\log _{e} x$
E. $f(x)=\frac{x+1}{x-1}$
$f(x)=\frac{x+1}{x-1}, f(f(x))=\frac{f(x)+1}{f(x)-1}=\frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1}=\frac{2 x}{2}=x$
$\therefore f(x)=\frac{x-1}{x+1}$ satisfies the functional equation.

Comment: $f(f(x))=x, \therefore f(x)=f^{-1}(x)$, i.e. the function and its inverse are the same. For $f(x)=\frac{x+1}{x-1}, f^{-1}(x)=\frac{x+1}{x-1}$, it satisfies the requirement $f(x)=f^{-1}(x)$.

Example 16 For $f(x)=1-\sqrt{x}$, show that
(a) $f(x y)=f(x)+f(y)-f(x) f(y)$ and
(b) $f\left(\frac{x}{y}\right)=\frac{f(x)-f(y)}{1-f(y)}$ for $x, y \in R^{+}$.
(a) $f(x)=1-\sqrt{x}, f(y)=1-\sqrt{y}$

$$
\begin{aligned}
& f(x)+f(y)-f(x) f(y)=1-\sqrt{x}+1-\sqrt{y}-(1-\sqrt{x})(1-\sqrt{y}) \\
& =2-\sqrt{x}-\sqrt{y}-(1-\sqrt{x}-\sqrt{y}+\sqrt{x} \sqrt{y})=1-\sqrt{x y}=f(x y) \\
& \text { (b) } \frac{f(x)-f(y)}{1-f(y)}=\frac{(1-\sqrt{x})-(1-\sqrt{y})}{1-(1-\sqrt{y})}=\frac{\sqrt{y}-\sqrt{x}}{\sqrt{y}} \\
& =1-\frac{\sqrt{x}}{\sqrt{y}}=1-\sqrt{\frac{x}{y}}=f\left(\frac{x}{y}\right)
\end{aligned}
$$

Q1 Given $f(x)=e^{x}$ and $g(x)=x^{2}+1$, find the rule for $f \circ g$ and state its domain and range.

Q3 Given $f(x)=|x-1|$ and $g(x)=\sin x$, find (a) $f \circ g$ and (b) $g \circ f$. Sketch the graph and state the range in each case.

Q5 The graphs of $y=f(x)$ and $y=g(x)$ are shown below. Sketch the graph of $y=g(f(x))$.

Q7 Show that $f(x)=x-\frac{1}{x}$ satisfies the functional equation $f\left(\frac{v}{u}\right)+f\left(\frac{u}{v}\right)=0$ for $u, v \neq 0$.

Q9 Given $f(x)=e^{x}-e^{-x}$ and $f^{\prime}(x)=e^{x}+e^{-x}$ express $f(2 x)$ in terms of $f(x)$ and $f^{\prime}(x)$.

Q2 Given $f:[1,2) \rightarrow R, f(x)=e^{x}$ and
$g: D \rightarrow R, g(x)=x^{2}+1$, find the maximal domain D such that $f \circ g$ is defined and state the range of $f \circ g$.

Q4 Let $g(x)=x^{2}+2 x-3$ and $f(x)=e^{2 x+3}$. Find $g(f(x))$ and its domain and range.

Q6 Let $f:(1, \infty) \rightarrow R, f(x)=p-x^{2}$ and
$g:(-\infty, 2) \rightarrow R, g(x)=\frac{1}{(x-2)^{2}}+p$, where $p>0$. Find the values of p such that both $f \circ g$ and $g \circ f$ are defined.

Q8 Given $f(x)=1-\log _{e} x$, show that $f(x)+f(y)=1-f(x y)$.

Q10 Show that $f(x)=\frac{x}{x-1}$ satisfies the functional equation $f(f(x))=x$.

Numerical, algebraic and worded answers: 1. Rule: $f(g(x))=e^{x^{2}+1}$, domain: R, range: $[e, \infty) \quad 2 . D$ is $(-1,1)$, range: $\left[e, e^{2}\right)$ 3a. [0,2] 3b. [-1,1]
4. $g(f(x))=e^{4 x+6}+2 e^{2 x+3}-3, R,(-3, \infty) \quad 6.1<p<3 \quad$ 8. $f(x)+f(y)=1-\log _{e} x+1-\log _{e} y=1+1-\log _{e} x y=1+f(x y)$
7. $f\left(\frac{u}{v}\right)+f\left(\frac{v}{u}\right)=\frac{u}{v}-\frac{v}{u}+\frac{v}{u}-\frac{u}{v}=0 \quad$ 9. $f(2 x)=e^{2 x}-e^{-2 x}=\left(e^{x}-e^{-x}\right)\left(e^{x}+e^{-x}\right)=f(x) f^{\prime}(x) \quad$ 10. $f(f(x))=\frac{f(x)}{f(x)-1}=\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1}=\frac{x}{1}=x$

