

Free maths self-help revision © copyright itute 2013

Composition of functions

More functions can be generated by addition/subtraction, multiplication/division and transformations of functions. Composition of functions creates new functions called composite functions.

Given two functions f and g, f composition g, denoted as $f \circ g$, is defined by f(g(x)) when the range of g is a subset of the domain of f, i.e. $r_g \subseteq d_f$.

Example 1 Given $f(x) = \log_e(x)$ and $g(x) = x^2 + 1$, find the rule for $f \circ g$ and state its domain and range.

$$f \circ g(x) = f(g(x)) = \log_e(g(x)) = \log_e(x^2 + 1)$$

The maximal domain of f is $(0,\infty)$, $\therefore x^2 + 1 > 0$ and it is true for any $x \in R$. \therefore the domain of $f \circ g$ is R.

Since $x^2 + 1 \ge 1$, .: the lowest value of $f \circ g$ is $\log_e 1 = 0$, .: the range of $f \circ g$ is $[0, \infty)$.

Example 2 Given $f:[2,10) \to R$, $f(x) = \log_e(x)$ and $g: D \to R$, $g(x) = x^2 + 1$, find the maximal domain *D* such that $f \circ g$ is defined and state the range of $f \circ g$.

The domain of *f* is (2,10), $\therefore 2 \le x^2 + 1 < 10$, $1 \le x^2 < 9$ $\therefore -3 < x \le -1$ or $1 \le x < 3$

:: D is $(-3,-1] \cup [1,3)$ which is also the domain of $f \circ g$.

The range of $f \circ g$ is $[\log_e 2, \log_e 10]$.

Example 3 Given $f(x) = e^x$ and $g(x) = x^2 - 4x - 5$, find the rule for $g \circ f$ and state its domain.

 $g \circ f(x) = g(f(x)) = (e^x)^2 - 4e^x - 5 = e^{2x} - 4e^x - 5$ $r_f \text{ is } (0,\infty), \ d_g \text{ is } R, \therefore r_f \subseteq d_g \text{ .: the domain of } f \text{ is also the domain of } g \circ f \text{ , i.e. } R.$

Example 4 Given f(x) = |x| and $g(x) = \sin x$, find (a) $f \circ g$ and (b) $g \circ f$. Sketch the graph and state the range in each case.

Example 5 (2006 VCAA Sample Exam 2 Version 2) Find the maximal domain, *D*, of the function $f: D \to R$ with rule $f(x) = \log_e(|x|) + 1$.

|x| > 0, i.e. $x \in R \setminus \{0\}$, .: D is $R \setminus \{0\}$.

Example 6 (2007 VCAA Exam 2) Let $g(x) = x^2 + 2x - 3$ and $f(x) = e^{2x+3}$. Find f(g(x)).

$$f(g(x)) = f(x^{2} + 2x - 3) = e^{2(x^{2} + 2x - 3) + 3} = e^{2x^{2} + 4x - 3}$$

Example 7 (2007 VCAA Exam 2) The graphs of y = f(x) and y = g(x) are shown below. Sketch the graph of y = f(g(x)).

Let
$$f(x) = x(x-2)$$
 and $g(x) = -|x|$.
 $y = f(g(x)) = -|x|(-|x|-2) = |x|(|x|+2)$
For $x \ge 0$, $y = x(x+2)$; for $x < 0$, $y = -x(-x+2) = x(x-2)$

Example 8 (2010 VCAA Exam 2) Given $f(x) = \frac{1}{2}e^{3x}$ and $g(x) = \log_e(2x) + 3$, find g(f(x)) and its maximal domain.

$$g(f(x)) = g\left(\frac{1}{2}e^{3x}\right) = \log_e\left(2 \times \frac{1}{2}e^{3x}\right) + 3$$

= $\log_e e^{3x} + 3 = 3x + 3$.

The range of *f* is a subset of the domain of *g*, i.e. $r_f \subseteq d_g$, .: the maximal domain of g(f(x)) is the maximal domain of *f*, i.e. *R*.

Example 9 Let $f:(-1,\infty) \to R$, $f(x) = p - x^2$ and $g:(-\infty,2] \to R$, $g(x) = \frac{1}{(x-3)^2} - p$, where p > 0. Find the values of p such that both $f \circ g$ and $g \circ f$ are defined.

$$\begin{split} &d_f = (-1,\infty), \ r_f = (-\infty,p], \ \text{why}? \\ &d_g = (-\infty,2], \ r_g = (-p,1-p], \ \text{why}? \\ &\text{For } f \circ g \ \text{to be defined}, \ r_g \subseteq d_f \ \text{, i.e.} \ (-p,1-p] \subseteq (-1,\infty) \\ &\therefore -p \geq -1, \ \text{i.e.} \ p \leq 1 \\ &\text{For } g \circ f \ \text{to be defined}, \ r_f \subseteq d_g \ \text{, i.e.} \ (-\infty,p] \subseteq (-\infty,2] \\ &\therefore \ p \leq 2 \\ &\therefore \ \text{for both to be defined}, \ p \leq 1 \ \text{AND} \ p \leq 2 \ \text{, } \therefore \ 0$$

Functional equations

 $2x^2 - 3y = 5$ is an equation in x and y. $3f(x) + (f(y))^2 - 1 = 0$ is a functional equation involving f(x)and f(y).

Example 10 Show that $f(x) = x + \frac{1}{x}$ satisfies the functional equation $f(uv) + f\left(\frac{u}{v}\right) = f(u)f(v)$ for $u, v \neq 0$.

$$f(x) = x + \frac{1}{x}, \ f(uv) = uv + \frac{1}{uv}, \ f\left(\frac{u}{v}\right) = \frac{u}{v} + \frac{v}{u}$$

$$\therefore \ f(uv) + f\left(\frac{u}{v}\right) = uv + \frac{1}{uv} + \frac{u}{v} + \frac{v}{u}$$

$$f(u)f(v) = \left(u + \frac{1}{u}\right)\left(v + \frac{1}{v}\right) = uv + \frac{1}{uv} + \frac{u}{v} + \frac{v}{u}$$

$$\therefore \ f(uv) + f\left(\frac{u}{v}\right) = f(u)f(v).$$

Example 11 Given $f(x) = \log_e x + 1$, show that $f\left(\frac{x}{y}\right) - 1 = f(x) - f(y)$. $f(x) = \log_e x + 1$, $f(y) = \log_e y + 1$ $\therefore f(x) - f(y) = \log_e x - \log_e y = \log_e \frac{x}{y}$ $f\left(\frac{x}{y}\right) - 1 = \log_e \frac{x}{y} + 1 - 1 = \log_e \frac{x}{y}$ $\therefore f\left(\frac{x}{y}\right) - 1 = f(x) - f(y)$.

Example 12 (2008 VCAA Exam 2)

Let $f: R \to R$, $f(x) = e^x + e^{-x}$. For all $u \in R$, express f(2u) in terms of f(u).

$$f(x) = e^{x} + e^{-x}, :: f(2u) = e^{2u} + e^{-2u} = e^{2u} + 2 + e^{-2u} - 2$$
$$= (e^{u} + e^{-u})^{2} - 2 = (f(u))^{2} - 2$$

Example 13 (2009 VCAA Exam 2) Let $f: R \to R$, $f(x) = x^2$. Which one of the following is **not** true? A. f(xy) = f(x)f(y)B. f(x) - f(-x) = 0 C. f(x - y) = f(x) - f(y)D. f(2x) = 4f(x) E. f(x + y) + f(x - y) = 2(f(x) + f(y)) $f(x - y) = (x - y)^2 = x^2 + y^2 - 2xy$, $f(x) - f(y) = x^2 - y^2$ $\therefore f(x - y) \neq f(x) - f(y)$ \therefore C is not true.

Example 14 (2006 VCAA Exam 2) The function *f* satisfies the functional equation $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$ where *x* and *y* are any non-zero real numbers. Which one of the following rules is a possibility for the function? A. $f(x) = \log_e |x|$ B. $f(x) = \frac{1}{x}$ C. $f(x) = 2^x$ D. f(x) = 2x E. $f(x) = \sin(2x)$

$$f(x) = 2x$$
 is a possible rule.

Check:
$$f\left(\frac{x+y}{2}\right) = 2\left(\frac{x+y}{2}\right) = x+y$$

$$\frac{f(x)+f(y)}{2} = \frac{2x+2y}{2} = x+y$$

$$\therefore f(x) = 2x \text{ satisfies } f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$$

Example 15 (2007 VCAA Exam 2) The function *f* satisfies the functional equation f(f(x)) = x for the maximal domain of *f*. Which of the following rules is a possibility for *f*?

A.
$$f(x) = x + 1$$
 B. $f(x) = x - 1$ C. $f(x) = \frac{x - 1}{x + 1}$
D. $f(x) = \log_e x$ E. $f(x) = \frac{x + 1}{x - 1}$

$$f(x) = \frac{x+1}{x-1}, \ f(f(x)) = \frac{f(x)+1}{f(x)-1} = \frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1} = \frac{2x}{2} = x$$

.: $f(x) = \frac{x-1}{x+1}$ satisfies the functional equation.

Comment: f(f(x)) = x, .: $f(x) = f^{-1}(x)$, i.e. the function and its inverse are the same. For $f(x) = \frac{x+1}{x-1}$, $f^{-1}(x) = \frac{x+1}{x-1}$, it satisfies the requirement $f(x) = f^{-1}(x)$.

Example 16 For
$$f(x) = 1 - \sqrt{x}$$
, show that
(a) $f(xy) = f(x) + f(y) - f(x)f(y)$ and
(b) $f\left(\frac{x}{y}\right) = \frac{f(x) - f(y)}{1 - f(y)}$ for $x, y \in R^+$.
(a) $f(x) = 1 - \sqrt{x}$, $f(y) = 1 - \sqrt{y}$
 $f(x) + f(y) - f(x)f(y) = 1 - \sqrt{x} + 1 - \sqrt{y} - (1 - \sqrt{x})(1 - \sqrt{y})$
 $= 2 - \sqrt{x} - \sqrt{y} - (1 - \sqrt{x} - \sqrt{y} + \sqrt{x}\sqrt{y}) = 1 - \sqrt{xy} = f(xy)$
(b) $\frac{f(x) - f(y)}{1 - f(y)} = \frac{(1 - \sqrt{x}) - (1 - \sqrt{y})}{1 - (1 - \sqrt{y})} = \frac{\sqrt{y} - \sqrt{x}}{\sqrt{y}}$
 $= 1 - \frac{\sqrt{x}}{\sqrt{y}} = 1 - \sqrt{\frac{x}{y}} = f\left(\frac{x}{y}\right)$

Exercise: Next page

