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Exponential (index) laws 
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defined for all x. 
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Example 4  Simplify ( ) ( )2
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Example 5  Simplify 
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Logarithm laws 
 

For 0, >qp , 
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Law 4 shows the relationship between palog  and pblog . 
 

Handy knowledge: 01log =a ; 1log =aa ;  

palog  is undefined for 0≤p ; 

0log <pa  for 10 << p ; 0log >pa  for 1>p . 

For even n, 
n

a plog  is defined for all Rp ∈  whilst pn alog  is 

defined only for 0>p , 
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The following graphs of 
2log xy e=  and xy elog2=  illustrate 

the point. 
 

        
 

Example 6  Evaluate 








32

1
log5 2 . 

 

252log552log5
2

1
log5

32

1
log5 2

5

2522 −=×−==







=






 −
. 

 

Example 7  Simplify ( ) ( )2
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Example 8  Evaluate 10log3 . 
 

Graphics calculators have only log (i.e. 10log ) and ln (i.e. elog ). 
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You can use CAS to evaluate 10log3  directly. 
 

Example 9  Show that xxx 284 log
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log2log3 =− . 

 

Change both logarithms on the left side of the identity to base 2. 
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Example 10  Show that e
e
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Change both sides to a common base b. 
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Example 11  Given qp e=10 , find (a) q in terms of p, (b) p in 

terms of q. 
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These two results show the way to change the base of an 

exponential function. 
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Example 12  Change x5  to base 10 and base e. 
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Equivalent relations 
 

Examples are:            yxxy ±=⇔=
2 ;  

                                   ( ) ( )yxxy 1sinsin −
=⇔= ; 

                                   yxy x

10log10 =⇔= ;  

                                   yxey e

x log=⇔= . 
 

In each case, both left and right statements give exactly the same 

relationship between x and y, i.e. they are equivalent. Try to plot 

the graphs of a pair of equivalent relations. They are the same 

plot. The left relation uses y as the subject, and the right relation 

uses x. In the last two examples, the left relations are expressed 

in index (exponential) form whilst the right relations are in 

logarithm form. 

 

Example 13 (2006 VCAA Exam 2)  If bay x
+=

23 , write x as 

the subject of the equation. 
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Example 14 (2007 VCAA Exam 2)  If ( ) 37log +−= bxy a , 

write x as the subject of the equation. 
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Inverse relations 
 

xey =  and yx elog=  are equivalent relations, but  

xey =  and 
yex =  are inverse relations, and so are  

xy elog=  and yx elog= . (Read each relation carefully) 
 

In inverse relations, the x and y-coordinates of all the points are 

interchanged. 

 
 

    
 

 
 

 

Other examples of inverse pairs are:  
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2xy =  for 0≥x  and xy = ;  

2xy =  for 0<x  and xy −= . 

 

 
 

  
 

Exercise: Next page 

Inverse pair: 

xy elog=  and yx elog=  

Inverse pair: 
xey =  and 

yex =  

Equivalence: 
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x

10log10 =⇔=  
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Q5 Evaluate 
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Q7 Change e1000log2  to natural log. 

 

 

 

 

 

 

 

 

 

 

Q9 If ( ) dcbxky a −+= log , write x as the subject of the 

equation. 
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Q4 Simplify 
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Q6 Simplify ( ) ( )2
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Q8 If bay x
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32 , write x as the subject of the equation. 

 

 

 

 

 

 

 

 

 
 

Q10 Express xx 84 log8log4 −  in terms of x2log . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical, algebraic and worded answers:  1. 
( )nn

nn

ab

ba
42

3

1

1

+

−
   2. x

e
−

−1    3. ( )377 +
n    4. 

3
1

2 








x

y
   5. 1−    6. ( )3

10 12log y−    7. 
2log

1000log1

e

e+
 

8. 






 +
=

2
log

3

1 by
x a ,   9. 










−=

+

ca
b

x k

dy1
   10. x2log

3

2
−  


