2007 Further Mathematics Trial Exam 2 Solutions Free download and print from www.itute.com Do not photocopy © Copyright 2007 itute.com

Core - Data analysis

Q1b $\quad 30 \leq x<35$
Q1c Average age
$=\frac{17.5 \times 5+22.5 \times 35+27.5 \times 55+32.5 \times 60+37.5 \times 45}{200} \approx 30$
Q2a Graphics calculator $R=-0.90+130.50 D, r=0.94$.
Q2b The residual plot shows a random pattern that indicates the least squares regression line and not a non-linear relationship is a suitable model for the data set.

Q3a

Q3b Seasonal index $=\frac{\text { actualfigure }}{\text { deaseasonalisedfigure }}$
First quarter S.I. $=\frac{98}{105}$ or $\frac{92}{99.3}$ or $\frac{99}{106.9}=0.926$
Second quarter S.I. $=\frac{86}{104.0}=0.827$
Third quarter S.I. $=\frac{130}{107.9}=1.205$
Fourth quarter S.I. $=\frac{112}{107.5}=1.042$

Q3c There was a slight downward trend in quarterly rainfall over the 3-year period.

Q3d For $t=13$,
deseasonalised rainfall $r=-0.3329 \times 13+106.2=101.9 \mathrm{~mm}$,
\therefore seasonal rainfall $=$ deseasonalised rainfall \times S.I.
$=101.9 \times 0.926=94.4 \mathrm{~mm}$
Q3e The extrapolation is not reliable because \mid correlation coefficient $\mid=0.4256$ is too low, which shows that there were large fluctuations in quarterly rainfall.

Module 2: Geometry and trigonometry

Q1a $\quad P Q=Q R=R P=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
$\angle P Q R=\angle Q R P=\angle R P Q=60^{\circ}$
Area of $\triangle P Q R=\frac{1}{2} \times \sqrt{2} \times \sqrt{2} \times \sin 60^{\circ}=0.866 \approx 0.9 \mathrm{~m}^{2}$
Q1b Volume of each corner $=\frac{1}{3}\left(\frac{1}{2} \times 1 \times 1\right) \times 1=\frac{1}{6} \mathrm{~m}^{3}$
Volume of resulting shape $=2^{3}-8 \times \frac{1}{6}=6.7 \mathrm{~m}^{3}$

Q1c Total surface area of 2-m cube with one corner removed $=6(2 \times 2)-3\left(\frac{1}{2} \times 1 \times 1\right)+0.866=23.366 \mathrm{~m}^{2}$
Linear scale factor $=2, \therefore$ area scale factor $=2^{2}=4$.
\therefore total surface area $=23.366 \times 4=93.5 \mathrm{~m}^{2}$

Q2a Horizontal distance $=450+150=600 \mathrm{~m}$
Vertical distance $400-50=350 \mathrm{~m}$
Average slope of $\mathrm{QO}=\frac{350}{600}=\frac{7}{12}$.
Q2b

Average slope of $\mathrm{QP}=\frac{300}{450}=\frac{8}{12}, \therefore \mathrm{QP}$ is steeper than QO and point P is above the line of sight $O Q . \therefore$ the view of Q from O is blocked by PR.

Q3a $\angle C A B=82-22=60^{\circ}, \angle C B A=98-28=70^{\circ}$
Q3b $\angle A C B=180-60-70=50^{\circ}$
The sine rule, $\frac{C A}{\sin 70^{\circ}}=\frac{120}{\sin 50^{\circ}}, C A=147.2 \mathrm{~m}$
Q3c Let h be the height of the flag pole.
$\frac{h}{147.2}=\tan 5^{\circ}, h=12.8785 \approx 12.9 \mathrm{~m}$
Q3d Use the sine rule to find $C B, \frac{C B}{\sin 60^{\circ}}=\frac{120}{\sin 50^{\circ}}$, $C B=135.662 \mathrm{~m}$.
Angle of elevation $=\tan ^{-1}\left(\frac{12.8785}{135.662}\right)=5.4^{\circ}$

Module 3: Graphs and relations

Q1a $n=55$
Q1b When $n=55, R=\frac{3200}{11} \times 55=16000$.
Gradient (slope) of cost graph $=\frac{16000-5000}{55}=200$,
$\therefore C=200 n+5000$
Q1ci $\quad P=R-C=\frac{3200}{11} n-(200 n+5000)$,
$P=\frac{1000}{11} n-5000$.
Q1cii When $n=50, P=\frac{1000}{11} \times 50-5000=-454.55$.
The loss is $\$ 454.55$.
Q2a From graph, distance $=3.5 \mathrm{~km}$
Q2b Average speed $=\frac{3.5}{40 / 60}=5.25 \mathrm{~km}$ per hour

Q2c Highest speed (maximum gradient) occurred at $t=33 \mathrm{~min}$.
Highest speed $=$ gradient of tangent at $t=33 \mathrm{~min}$
$\approx \frac{2}{10 / 60}=12 \mathrm{~km}$ per hour.
Q3a $\quad P=1.80 x+1.20 y$

Q3b $\quad x \geq 0, y \geq 0$.
Cabernet wine: $\frac{1}{2} x+\frac{1}{6} y \leq 15, \therefore 3 x+y \leq 90$
Shiraz wine: $\frac{1}{2} x+\frac{1}{3} y \leq 20, \therefore 3 x+2 y \leq 120$
Mataro wine: $\left(1-\frac{1}{6}-\frac{1}{3}\right) y \leq 22.5, \therefore y \leq 45$

Q3c

Q3d Any point on line segment BC gives maximum profit. Only point $C(20,30)$ has the greatest number of litres of X and the least number of litres of Y.
Greatest number of litres of $\mathrm{X}=20000$
Least number of litres of $Y=30000$
Q3e \quad Max $P=1.80 \times 20+1.20 \times 30=72$
Max possible profit $=\$ 72000$.
Module 4: Business-related mathematics
Q1a Let A_{2005} be the total cost at the start of 2005.
$A_{2006}=\left(1+\frac{5}{100}\right) A_{2005}$ and $A_{2007}=\left(1+\frac{10}{100}\right) A_{2006}$.
$\therefore A_{2007}=\left(1+\frac{10}{100}\right)\left(1+\frac{5}{100}\right) A_{2005}$
$\therefore 100=1.10 \times 1.05 \times A_{2005}, \therefore A_{2005}=\frac{100}{1.10 \times 1.05}=\$ 86.58$
Q1b Inflation $=100-86.58=13.42$
Annual inflation rate $=\frac{13.42}{86.58 \times 2}=0.0775=7.75 \%$
Q2a

Date	Deposit	Withdrawal	Balance
$1 / 8$			$\$ 2325.80$
$3 / 8$		$\$ 201.50$	$\$ 2124.30$
$12 / 8$	$\$ 570.00$		$\$ 2694.30$
$17 / 8$		$\$ 89.75$	$\$ 2604.55$
$23 / 8$		$\$ 364.20$	$\$ 2240.35$
$29 / 8$	$\$ 230.00$		$\$ 2470.35$

Minimum balance for August is $\$ 2124.30$.
Q2b Interest $=2124.30 \times \frac{3.5}{100} \times \frac{1}{12}=\$ 6.20$
Q2c Balance $=2470.35+6.20=\$ 2476.55$
Q3a TVM Solver \$1505.59
Q3b Interest $=1505.5921 \times 240-180000=\$ 181342.10$

Q3c TVM Solver 217.4838191 months,
i.e. 218 months or 18 years 2 months.

Q3d Amount owing after 217 months, TVM Solver \$722.45
Final repayment $=722.45 \times\left(1+\frac{7.35}{100 \times 12}\right)=\$ 726.88$
Please inform mathline@itute.com re conceptual, mathematical and/or typing errors

