蓡.

Distribution of the sample means of random variable X

Examples of random variable X :
The IQ of a person in a population (e.g. the Perth population) The length of a fish in a lake

Population:

Random variable X with any type of distribution Population mean μ of X is known
Population standard deviation σ of X is known μ and σ are constants for a particular population

Take random samples A, B, C, \ldots of the same size n from the population.

In random sample A, the mean (average) value of the sample contents is called the sample mean of A and it is denoted by \bar{x}_{A}. It is calculated by $\bar{x}_{A}=\frac{x_{A 1}+x_{A 2}+\cdots+x_{A n}}{n}$.
In random sample $B, \bar{x}_{B}=\frac{x_{B 1}+x_{B 2}+\cdots+x_{B n}}{n}$, etc.
The sample mean depends on the content of a sample, .: it varies from sample to sample,.$:$ we can consider $\bar{x}_{A}, \bar{x}_{B}, \ldots$ as values of a random variable denoted by \bar{X}.

Notations: \bar{X} to represents the sample mean random variable and \bar{x} represents the value of \bar{X} for a random sample.

Irrespective of the distribution of X in the population, if the sample size is large enough,
(1) the distribution of the sample mean \bar{X} is approximately normal
(2) the mean of \bar{X} is given by $\mathrm{E}(\bar{X})$ which is exactly equal to μ, the population mean
(3) the standard deviation of \bar{X} is given by $\operatorname{sd}(\bar{X})=\frac{\sigma}{\sqrt{n}}$ where σ is the standard deviation of X in the population

In the discussion above, the population constants μ and σ of X are known or given. We use them to predict the distribution of \bar{X} in the random samples.

Inference about the population from a sample

Usually we don't know what the population μ and σ are. To learn about the population we take a random sample of size n from it. \bar{x} of the random sample can be used as an estimate of the population mean μ. We infer about the population from a random sample.

Calculate the sample mean, one of the statistics of the sample, $\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$, if it is not known or given.

The value of \bar{x} is a reasonable estimate of the population mean μ of random variable X. The larger the sample size n, the better is the estimation.
A better alternative to \bar{x} as an estimator of μ is to give an interval of X values that we are 95% sure contains the population mean μ, meaning about 95 out of 100 confidence intervals of X values calculated from the random samples contain μ.
This interval is called a 95% confidence interval for μ.
Its calculation is $\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)$ approximately.
For a 99% confidence interval, $\left(\bar{x}-2.85 \frac{\sigma}{\sqrt{n}}, \bar{x}+2.85 \frac{\sigma}{\sqrt{n}}\right)$
Note 1: The larger the sample size n, the distribution is closer to normal and .: the confidence interval is more precise.

Note 2:
$\operatorname{Pr}(-1.96<Z<1.96) \approx \frac{95}{100}, \operatorname{Pr}(-2.85<Z<2.85) \approx \frac{99}{100}$
where random variable Z has a standard normal distribution.
Note 3:
In general, an $A \%$ confidence interval is approximately
$\left(\bar{x}-z \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+z \frac{\sigma}{\sqrt{n}}\right)$ where $\operatorname{Pr}(-z<Z<z) \approx \frac{A}{100}, z>0$
Note 4:
For constant sample size n, the higher the required confidence level, the wider is the required interval.
For a required confidence level, the larger the sample size n, the narrower is the required interval.

However, the population standard deviation σ is generally unknown.
In the absence of any other information, the sample standard deviation s can be used instead of σ in the calculation e.g.
$\left(\bar{x}-1.96 \frac{s}{\sqrt{n}}, \quad \bar{x}+1.96 \frac{s}{\sqrt{n}}\right)$ for the 95% confidence interval.
http://www.learning-with-meaning.com/

Example 1 (2016 VCAA SM Sample Exam 2 SECTION A Q 19)
The mean study score for a large VCE study is 30 with a standard deviation of 7. A class of 20 students may
be considered as a random sample drawn from this cohort.
The probability that the class mean for the group of 20 exceeds 32 is
A. 0.1007
B. 0.3875
C. 0.3993
D. 0.6125
E. 0.8993
$\operatorname{sd}(\bar{X})=\frac{\sigma}{\sqrt{n}}=\frac{7}{\sqrt{20}} \approx 1.56525, \mu=30$
Normal: $\operatorname{Pr}(\bar{X}>32) \approx 0.1007$ A

