

Distribution of the sample means of random variable *X*

Examples of random variable *X*:

The IQ of a person in a population (e.g. the Perth population) The length of a fish in a lake

Population: Random variable *X* with *any type* of distribution Population mean μ of *X* is known Population standard deviation σ of *X* is known

 μ and σ are constants for a particular population

Take random samples A, B, C, ... of the same size n from the population.

In random sample *A*, the mean (average) value of the sample contents is called the sample mean of *A* and it is denoted by \bar{x}_A . It

is calculated by $\overline{x}_A = \frac{x_{A1} + x_{A2} + \dots + x_{An}}{n}$. In random sample *B*, $\overline{x}_B = \frac{x_{B1} + x_{B2} + \dots + x_{Bn}}{n}$, etc.

The sample mean depends on the content of a sample, .: it varies from sample to sample, .: we can consider \overline{x}_A , \overline{x}_B , ... as values of a random variable denoted by \overline{X} .

Notations: \overline{X} to represent the sample mean random variable and \overline{x} represents the value of \overline{X} for a random sample.

Irrespective of the distribution of *X* in the population, if the sample size is large enough,

(1) the distribution of the sample mean \overline{X} is approximately normal

(2) the mean of \overline{X} is given by $E(\overline{X})$ which is exactly equal to μ , the population mean

(3) the standard deviation of \overline{X} is given by $\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}$ where

 σ is the standard deviation of X in the population

In the discussion above, the population constants μ and σ of *X* are known or given. We use them to predict the distribution of \overline{X} in the random samples.

http://www.learning-with-meaning.com/

Inference about the population from a sample

Usually we don't know what the population μ and σ are.

To learn about the population we take a random sample of size *n* from it. \bar{x} of the random sample can be used as an estimate of the population mean μ . We infer about the population from a random sample.

Calculate the sample mean, one of the statistics of the sample,

 $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$, if it is not known or given.

The value of \overline{x} is a reasonable estimate of the population mean μ of random variable *X*. The larger the sample size *n*, the better is the estimation.

A better alternative to \overline{x} as an estimator of μ is to give an interval of *X* values that we are 95% sure contains the population mean μ , meaning about 95 out of 100 confidence intervals of *X* values calculated from the random samples contain μ .

This interval is called a 95% confidence interval for μ .

Its calculation is
$$\left(\bar{x} - 1.96\frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96\frac{\sigma}{\sqrt{n}}\right)$$
 approximately.
For a 99% confidence interval. $\left(\bar{x} - 2.85\frac{\sigma}{\sqrt{n}}, \bar{x} + 2.85\frac{\sigma}{\sqrt{n}}\right)$

For a 99% confidence interval, $\left(\overline{x} - 2.85 \frac{\sigma}{\sqrt{n}}, \overline{x} + 2.85 \frac{\sigma}{\sqrt{n}}\right)$

Note 1: The larger the sample size n, the distribution is closer to normal and .: the confidence interval is more precise.

Note 2:

$$\Pr(-1.96 < Z < 1.96) \approx \frac{95}{100}$$
, $\Pr(-2.85 < Z < 2.85) \approx \frac{99}{100}$

where random variable Z has a standard normal distribution.

Note 3:

In general, an A% confidence interval is approximately

$$\left[\overline{x} - z\frac{\sigma}{\sqrt{n}}, \quad \overline{x} + z\frac{\sigma}{\sqrt{n}}\right]$$
 where $\Pr\left(-z < Z < z\right) \approx \frac{A}{100}, \quad z > 0$

Note 4:

For constant sample size *n*, the higher the required confidence level, the wider is the required interval.

For a required confidence level, the larger the sample size n, the narrower is the required interval.

However, the population standard deviation σ is generally unknown.

In the absence of any other information, the sample standard deviation s can be used instead of σ in the calculation e.g.

$$\left(\overline{x}-1.96\frac{s}{\sqrt{n}}, \overline{x}+1.96\frac{s}{\sqrt{n}}\right)$$
 for the 95% confidence interval.

Example 1 (2016 VCAA SM Sample Exam 2 SECTION A Q 19)

The mean study score for a large VCE study is 30 with a standard deviation of 7. A class of 20 students may

be considered as a random sample drawn from this cohort. The probability that the class mean for the group of 20 exceeds 32 is

A. 0.1007 B. 0.3875 C. 0.3993 D. 0.6125

E. 0.8993

 $\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}} = \frac{7}{\sqrt{20}} \approx 1.56525, \ \mu = 30$ Normal: $\operatorname{Pr}(\overline{X} > 32) \approx 0.1007$ A