

Draline at home tutors negistereal business name: itute anv: 96297924083

2016
 Specialist
 Mathematics

Year 12
Modelling Tas/i

Time allowed: 2.5 hours

You are allowed: 1 bounded reference, 1 CAS , 1 scientific calculator Working must be shown for questions worth 2 or more marks. Total: 80 marks

Theme: Flight paths

The base (ground level) of a regional airfield control tower is located at the origin O .
Control centre C is inside the control tower and it is 25 m above the ground.
The airfield is horizontal. Unit vectors \tilde{i} and \tilde{j} point to the east and north respectively, and unit vector \tilde{k} points vertically upward.
Distance is in metres and time in seconds.
Helicopter H on the ground takes off in a straight line in the SE direction, climbing at an angle of 30° to the horizontal.
Helicopter H takes off at time $t=0$ and its initial position is $\tilde{r}=1000 \tilde{j}$.
H maintains a constant speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ for 60 seconds. It stops climbing at $t=60 \mathrm{~s}$, and flies horizontally in the SE direction at a speed of $10 \sqrt{3} \mathrm{~m} \mathrm{~s}^{-1}$.

Question 1

a. Write down the position vector \tilde{r}_{C} of Control centre C .
b. Show that the velocity of H is $\tilde{v}=5(\sqrt{6} \tilde{i}-\sqrt{6} \tilde{j}+2 \tilde{k})$ in the first 60 s .
c. Show that the flight path of H can be modelled by the position vector $\tilde{r}_{\mathrm{H}}=5(\sqrt{6} t \tilde{i}+(200-\sqrt{6} t) \tilde{j}+2 t \tilde{k})$ in the first 60 s.
d. Find the maximum altitude of H above the ground.
e. Show that the position vector of H for $t>60$ is $\tilde{r}_{\mathrm{H}}=5(\sqrt{6} t \tilde{i}+(200-\sqrt{6} t) \tilde{j}+\alpha \tilde{k})$. Find the value of α.
f. In terms of t, find the distance of H from C in the first 60 s . Simplify your answer.
h. Sketch the graph of distance of H from C against time t for the interval $0 \leq t \leq 90 \mathrm{~s}$. Show and label intercepts, end-points and stationary points.

i. Calculate the shortest distance of H from C for $t \geq 0$ and the time that it occurs.
j. Use a dot product to find the shortest distance of H from C in the interval $0 \leq t \leq 60 \mathrm{~s}$.
k. Use a dot product to show that the shortest distance of H from C cannot occur at $t>60 \mathrm{~s}$.
l. The sun is directly above H while H is in flight. The sun casts a shadow of H on the ground.

Determine the speed of the shadow of H at time t.
m. Show that the true bearing $\left({ }^{\circ} \mathrm{T}\right)$ of H from the control tower at $t>0 \mathrm{~s}$ is given by $\tan ^{-1}\left(1-\frac{100 \sqrt{6}}{3 t}\right)+90$.

3 marks
n. Show that H will be SE of the control tower eventually.

2 marks
0. If H maintains a constant speed of $V \mathrm{~m} \mathrm{~s}^{-1}$ for 60 seconds, stops climbing at $t=60 \mathrm{~s}$, and flies in the SE direction at a speed of $\frac{\sqrt{3}}{2} V \mathrm{~m} \mathrm{~s}^{-1}$, find the flight path of H for $t \geq 0$ in the form of a hybrid vector function of t in terms of V.
p. Find V when H is closest to C at $t=20 \mathrm{~s}$.

4 marks
q. If H maintains a constant speed of $V \mathrm{~m} \mathrm{~s}^{-1}$ for T seconds, stops climbing at $t=T \mathrm{~s}$, and flies in the SE direction at a speed of $\frac{\sqrt{3}}{2} V \mathrm{~m} \mathrm{~s}^{-1}$, find the flight path of H for $t \geq 0$ in the form of a hybrid vector function of t in terms of V and T.
r. Express V in terms of T as an inequality when H is able to level with C at $t \leq T$.
s. Express V in terms of T as an inequality when H can never level with C .

H is first level with C at $T=60 \mathrm{~s}$. The pilot drops a lollypop at $t=61$. Ignore air resistance.
t. Find the time taken for the lollypop to fall to the ground.
u. Find the horizontal distance travelled by the lollypop while falling.

The position of aeroplane P at time $t \geq 0$ is modelled by $\tilde{r}=5\left(2 \sqrt{1+(t-1)^{2}} \tilde{i}-2 \sqrt{2}(t-1) \tilde{j}+|t-2| \tilde{k}\right)$. The aeroplane is first spotted by Control centre C at $t=0$.

Question 2

a. Find t when P touches the ground momentarily.
b. Find the position of aeroplane P when it touches the ground momentarily.
c. Determine the Cartesian equation of the path of the shadow cast on the ground when the sun is directly above the aeroplane.
d. Sketch the path of the shadow of aeroplane P for $t \geq 0$.

Show the coordinates of the endpoint(s), axis-intercept(s) and equation of asymptote(s).

e. Find the time when P is closest to C .
f. Find the exact speed of P relative to C when it is first spotted.

4 marks
g. At what angle (nearest degree) does the tangent to the flight path of P make with the ground at the time when it is first spotted by C ?
h. In what direction (nearest ${ }^{\circ} \mathrm{T}$) does P fly at the time when it is first spotted by C ?

End of task

