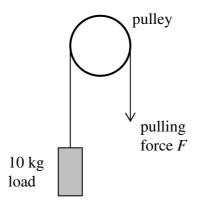
2016 Specialist Mathematics Problem Solving Task


You are allowed: 1 bounded reference, 1 CAS, 1 scientific calculator, 5 min reading + 120 min writing *Working must be shown for questions worth 2 or more marks.*

Theme: Force required moving a load at constant speed

Distance is in metres, mass in kilogram, time in seconds and force in newtons. $g = 9.8 \text{ N kg}^{-1}$

Problem 1

A 10 kg load is raised by pulling a rope over a frictionless pulley.

a. Determine the pulling force required to raise the load at a constant speed of 0.2 m s^{-1} . 1 mark

b. What is the tension in the rope while the load is raised at 0.2 m s^{-1} ? 1 mark

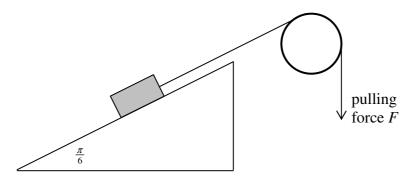
c. Determine the pulling force required to lower the load at a constant speed of 0.2 m s^{-1} . 1 mark

d. What is the tension in the rope while the load is lowered at 0.2 m s^{-1} ? 1 mark

e. If the load is M kg, write down a formula for pulling force F required to raise the load at constant speed.

1 mark

f. If the load is M kg, write down a formula for pulling force F required to lower the load at constant speed.


1 mark

Problem 2

Now the 10 kg load is placed on a rough inclined plane. The inclined plane makes an angle $\frac{\pi}{6}$ with a

horizontal plane.

The force of friction between the load and the inclined plane is given by $F_{\text{friction}} = 0.25N$ where N is the normal reaction force of the inclined plane on the load.

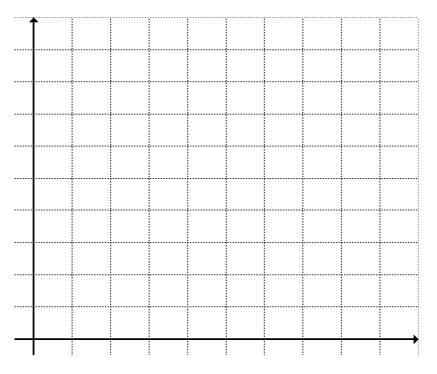
a. Calculate the value of F_{friction} .

c. Determine the pulling force required to lower the load at a constant speed of 0.2 m s^{-1} . 2 marks

Now the inclined plane makes an angle of θ with the horizontal plane, and $0 \le \theta \le \frac{\pi}{2}$. The force of friction between the load and the inclined plane is given by $F_{\text{friction}} = \mu N$ where $\mu > 0$.

d. If the load is M kg, show that a formula for pulling force F required to raise the load at constant speed is $F = Mg(\mu \cos \theta + \sin \theta)$.

3 marks


e. If the load is M kg, in terms of M, g, θ and μ , write down a formula for pulling force F required to lower the load at constant speed.

f. By CAS express θ in terms of M, g, F and μ , where F is the pulling force required to raise the load at constant speed.

g. If M = 10 kg, $\mu = 0.25$ and $\theta < \frac{\pi}{2}$, what is the value of θ which requires a pulling force of 98 newtons to raise the load at constant speed?

2 marks

h. If $\mu = 0.25$, sketch the graph of $\left(\frac{F}{Mg}\right)$ versus θ , where *F* is the required force to raise the load at constant speed. Show the coordinates of the endpoints. 3 marks

i. Describe and explain the situation represented by each end point.

Use your graph to help to find the answers to parts **j**, **k** and **l**.

j. If M = 10 kg, what is the maximum force required to raise the load at constant speed? 1 mark

k. At what angle the maximum force is required to raise the load at constant speed? 1 mark

- I. If M = 15 kg, at what angle the maximum force is required to raise the load at constant speed? 1 mark
- **m.** Differentiate $F = Mg(\mu\cos\theta + \sin\theta)$ with respect to θ . Do not use CAS. 2 marks

n. Hence show the angle θ which requires maximum force to raise the load at constant speed is given by $\theta = \tan^{-1}\left(\frac{1}{\mu}\right)$.

1 mark

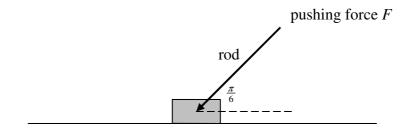
p. Show that the maximum force required to raise the load at constant speed is given by $F = Mg\sqrt{1+\mu^2}$.

4 marks

q. Hence verify your answer to part j.

r. The rope used to raise the load will break if its tension exceeds $10\sqrt{2} g$ newtons. Given $\mu = 1$ and the inclined plane makes an angle $\frac{\pi}{6}$ with the horizontal, determine the maximum mass of the load that can be raised by the rope.

2 marks

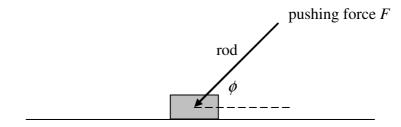

1 mark

s. The rope used to raise the load will break if its tension exceeds $10\sqrt{2} g$ newtons. The inclined plane makes an angle θ with the horizontal, which requires *maximum* pulling force *F* to raise the load. Given $\mu = 1$, determine the maximum mass of the load that can be raised by the rope.

Problem 3

Consider the 10 kg load on a horizontal plane. A rod (of negligible mass) is attached to the load, making an angle $\frac{\pi}{6}$ with the horizontal plane. A pushing force *F* is applied to the rod.

The force of friction between the load and the horizontal plane is given by $F_{\text{friction}} = 0.25N$ where N is the normal reaction force of the plane on the load.


a. Use the vertical force components to show that $N = \frac{F}{2} + 98$. 2 marks

b. Find the force of friction F_{friction} between the load and the horizontal plane in terms of pushing force *F*.

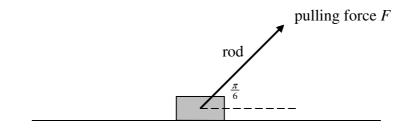
1 mark

c. What is the pushing force required to move the load at a constant speed of 0.2 m s^{-1} along the plane?

Now the pushing force *F* makes an angle of ϕ with the horizontal plane, where $0 \le \phi \le \frac{\pi}{2}$. The force of friction between the load and the plane is given by $F_{\text{friction}} = \mu N$, and $\mu > 0$.

d. If the load is *M* kg, show that a formula for pushing force *F* required to move the load at constant speed along the plane is $F = \frac{\mu Mg}{\cos \phi - \mu \sin \phi}$. 3 marks

e. Use the above formula to verify part c.


1 mark

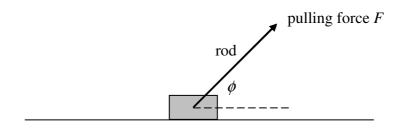
f. In terms of μ only, find the values of ϕ at which it is impossible to move any load at constant speed along the plane.

Problem 4

Consider a 10 kg load on a horizontal plane. A rod (of negligible mass) is attached to the load, making an angle $\frac{\pi}{6}$ with the horizontal plane. This time a pulling force is applied to the rod.

The force of friction between the load and the horizontal plane is given by $F_{\text{friction}} = 0.25N$ where N is the normal reaction force of the plane on the load.

a. Use the vertical force components to show that F = 196 - 2N. 1 mark


- **b.** Find the maximum pulling force *F* which will not lift the load off the plane. 1 mark
- c. Find the force of friction F_{friction} between the load and the horizontal plane in terms of pulling force F.

1 mark

d. What is the pulling force required to move the load at a constant speed of 0.2 m s^{-1} along the plane? 2 marks

Now the pulling force *F* makes an angle of ϕ with the horizontal plane, where $0 \le \phi \le \frac{\pi}{2}$. The force of friction between the load and the plane is given by $F_{\text{friction}} = \mu N$, and $\mu > 0$.

Assume that the load is never lifted off the plane.

e. If the load is *M* kg, show that a formula for pulling force *F* required to move the load at constant speed along the plane is $F = \frac{\mu Mg}{\cos\phi + \mu \sin\phi}$. 2 marks

f. Use the above formula to verify part **d**.

1 mark

g. Show that $\cos \phi + \mu \sin \phi \ge \mu$ for the load to move at constant speed along the plane. 3 marks

h. For $\mu > 1$, find the interval for ϕ that allows the load to move at constant speed along the plane. Show working with clear explanation.

i. Interpret and explain the situations represented by the endpoints (inclusive and/or exclusive) of the interval for ϕ in part **h**.

j. For $\mu \le 1$, find the interval for ϕ that allows the load to move at constant speed along the plane. Show working with clear explanation.

3 marks

3 marks

k. Interpret and explain the situations represented by the endpoints (inclusive and/or exclusive) of the interval for ϕ in part **j**.

3 marks

End of Task