

2011 Further Mathematics Trial Exam 2 Solutions
Free download from www.itute.com © Copyright 2011 itute.com

Core - Data analysis

Q1a 50\%

Q1b Higher, uptrend for median age.
Q1c Tasmania

Q1d $37-32={ }^{+} 5$
Q2a Increased with age, peaked at the 35-44 age group, then decreased with age.

Q2b The missing entries are 37 and 35.

Q2c By calculator: $a \approx-0.93, b \approx 81$
Q2d Either
the reciprocal of percentage for education vs centre of age group, $r=0.97$
or
percentage for education vs the reciprocal of centre of age group, $r=0.98$

Q3a
$a=\frac{1350+1300+1400}{3}=1350$
$b=\frac{1400+1500+1450}{3}=1450$
Q3b The 3-year moving average shows a linear uptrend.
Q3c Predicted value $=883.3+59.4 \times 1=942.7$
Residual $=850-942.7=-92.7 \mathrm{~cm}$
Q3d In the period 1999 - 2010, the average increase of the annual rainfall is 59.4 cm per year.

Q4a $r^{2}=0.5098, r=\sqrt{0.5098} \approx 0.7140$ (Note: It is reasonable to assume that the correlation is positive.)
$m=r \times \frac{s_{y}}{s_{x}}=0.7140 \times \frac{15.3960}{5.7155} \approx 1.9233$
$c=\bar{y}-m \bar{x}=71.4138-1.9233 \times 20.8966 \approx 31.22$

Q4b 51% of the variation of the atar score can be explained by the variation of the average number of hours of study per week.

Module 2: Geometry and trigonometry
Q1a and c

Q1b $180-\frac{360}{5}=108^{\circ}$

Q2a The dotted line divides the quadrilateral into 2 triangles.
For the lower triangle, $s=\frac{20+32+16}{2}=34$,
$A=\sqrt{34(34-20)(34-32)(34-16)} \approx 130.9$
For the upper triangle, $s=\frac{24+32+28}{2}=42$,
$A=\sqrt{42(42-24)(42-32)(42-28)} \approx 325.3$
Total area of the block of land $\approx 130.9+325.3 \approx 456 \mathrm{~m}^{2}$
Q2b Area scale factor is $(1 \mathrm{~cm} / 5 \mathrm{~m})^{2}=1 / 25 \mathrm{~cm}^{2} / \mathrm{m}^{2}$. Area of the drawing $\approx \frac{1}{25} \times 456 \approx 18 \mathrm{~cm}^{2}$.

Q2c The corner opposite to the dotted line in the lower triangle has a greater angle. Let the angle be θ.

$$
\begin{aligned}
& 32^{2}=20^{2}+16^{2}-2(20)(16) \cos \theta \\
& \cos \theta=\frac{20^{2}+16^{2}-32^{2}}{2(20)(16)}, \theta \approx 125^{\circ}
\end{aligned}
$$

Q3a $\theta=\tan ^{-1}\left(\frac{300}{1200}\right) \approx 14^{\circ}$

Q3b $d=1200 \sin 30^{\circ}=600 \mathrm{~m}$ or 0.6 km

Q3c

Q4a Height of air $=20-12=8 \mathrm{~cm}$
air $:$ container
Linear ratio:-
8:20
or $2: 5$
Volume ratio:- $\quad 2^{3}: 5^{3}$
or $8: 125$
.: air $:$ container $:$ water 8:125:117

$$
\frac{\text { volume of air }}{\text { volume of water }}=\frac{8}{117}
$$

Q4b

$$
\frac{\text { volume of water }}{\text { volume of pyramid }} \quad=\frac{117}{125}
$$

Volume of water $=\frac{117}{125} \times\left(\frac{1}{3} \times 125 \times 20\right)=780 \mathrm{~cm}^{3}$

Module 3: Graphs and relations

Q1a

Q1b Tax = tax on taxable income + flood levy
$=(17550+0.37(120000-80000))+(250+0.01(120000-100000))$
$=32800$ dollars

Q2a Average speed $=\frac{12}{\frac{38}{60}} \approx 19 \mathrm{~km} \mathrm{~h}^{-1}$

Q4b Maximum value of P occurs at the intersection of
$2 x+y=60$ and $x+3 y=90$, i.e. when $x=18$ and $y=24$. $P_{\text {max }}=11 \times 18+5 \times 24=318$.

Q3a Average \% rise over the three years
$=\frac{174.0-162.2}{162.2} \times 100 \% \approx 7.27497 \%$
Average annual \% rise over the three years $=7.27497 \% \div 3 \approx 2.425 \%$

Q3b $\$ 100 \times \frac{172.1}{178.3} \approx \$ 96.52$
Q3c $\$ 96.52$ plus 3.5% interest $=96.52+\frac{3.5}{100} \times 96.52 \approx \$ 99.90$
. behind by $\$ 0.10$

Q4a \$4127.00

Q4b Total interest $=6257 \times \frac{5.25}{100} \times \frac{8}{12}+4127 \times \frac{5.25}{100} \times \frac{4}{12}$
$\approx \$ 291$
TVM Solver:
$\mathrm{N}=300$
$\mathrm{I} \%=7.25$
$\mathrm{PV}=300000$
PMT =
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$
Monthly repayment $\approx \$ 2168.42$

Q2b
TVM Solver:
$\mathrm{N}=12$
$\mathrm{I} \%=7.25$
$\mathrm{PV}=300000$
PMT $=-2168.42$
$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$

Amount owing after the first 12 months $\approx \$ 295584.13$
TVM Solver:
$\mathrm{N}=$
$\mathrm{I} \%=7.25$
$\mathrm{PV}=295584.13$
PMT $=-2400$
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=12$
$\mathrm{N} \approx 226.27$

Number of months earlier $\approx 300-12-226.27 \approx 62$
Q2c Savings in interest
$=2168.42 \times(300-12)-2400 \times 226.27$
$\approx \$ 81500$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors

