

2010 VCAA Further Mathematics Exam 2 Solutions © Copyright 2010 itute.com Free download from www.itute.com

Core

Q1a 11 out of $22, \frac{11}{22}=\frac{1}{2}$ or 0.5 or 50%

Q1b Median $=\frac{32+24}{2}=28$, range $=56-0=56$,
$I Q R=38-21=17$
Q1c 11246
Q1d If we take the 'centre' to mean the middle value of a set of data arranged in order, then the median is the perfect measure of the centre of any distribution because the median divides the data set into 2 halves, 50% above and below the value. The mean indicates the average of the values in the data set. If the distribution of the data set is close to symmetric, like in this case, then the mean is close to and a good indicator of the centre.

Q2a Male income

Q2b Increase in female income $=0.35 \times 1000=\$ 350$
Q2ci Average annual female income
$=13000+0.35 \times 15000=\$ 18250$
Q2cii The data set is for the 16 countries where the male income is $\$ 40000$ or over (except 1), :: it is not reliable to use the regression line to predict the average annual female income for a country with a much lower average annual male income of $\$ 15000$.

Q3a

Q3b Increasing trend
Q3c Use CAS/calculator: $G D P=20000+524 \times$ time
Q3d For year 2007, time $=27$,
predicted $G D P=20000+524 \times 27=34148$.
Error $=34900-34148=752$ below the actual GDP.

Module 1: Number patterns

Q1ai $7.90-6.20=1.70,6.20-4.50=1.70, .: d=\$ 1.70$
Q1aii $A_{5}=4.50+(5-1) 1.70=\$ 11.30$
Q1aiii $A_{n}=4.50+(n-1) 1.70=16.40, .: n=8$

Q1aiv $S_{15}=\frac{15}{2}(2 \times 4.50+(15-1) 1.70)=\$ 246$

Q1av Compare $A_{n+1}=m A_{n}+k$ with $A_{n+1}=A_{n}+d$ for an arithmetic sequence, $m=1$ and $k=d=1.70$

Q1bi The charge is $\$ 5.00$ for travelling along one section of road in a single trip on the tollway.

Q1bii $B_{n+1}=0.9 B_{n}+3, B_{1}=5$
$B_{2}=0.9 B_{1}+3=0.9 \times 5+3=7.50$
$B_{3}=0.9 B_{2}+3=0.9 \times 7.50+3=9.75$ dollars

Q1biii Use CAS to list the terms. The terms approach 30 as the limit. .: maximum charge $=\$ 30$

Q1c Use CAS to list the terms for both difference equations:

n	A_{n}	B_{n}
10	19.8	20.31
11	21.5	21.28

For 10 or less sections, it is cheaper to use pass A.
For 11 or more sections, it is cheaper to use pass B.
Q2a $\quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}, r=1.05, n=6$
$\therefore 100=\frac{a\left(1.05^{6}-1\right)}{0.05}$, $:$ the first section $a \approx 14.7 \mathrm{~km}$

Q2b $L_{n+1}=1.05 L_{n}$ where $L_{1}=14.7$ and $1 \leq n \leq 5$

Module 2: Geometry and trigonometry

Q1a $x^{\circ}=180^{\circ}-60^{\circ}=120^{\circ}$
Q1b Bearing of the entry gate from the canoeing activity: $360^{\circ}-120^{\circ}=240^{\circ}$

Q1c $40 \cos 60^{\circ}=20 \mathrm{~m}$ north of the entry gate
Q1di Area $=\frac{1}{2} \times 40 \times 90 \times \sin 120^{\circ} \approx 1558.8 \mathrm{~m}^{2}$

Q1dii $\overline{G W}=\sqrt{40^{2}+90^{2}-2(40)(90) \cos 120^{\circ}} \approx 115.3 \mathrm{~m}$
Q1ei $\angle C K W=180^{\circ}-2 \times 10^{\circ}=160^{\circ}$
Q1eii $\frac{\overline{C K}}{\sin 10^{\circ}}=\frac{90}{\sin 160^{\circ}}, \overline{C K} \approx 45.7 \mathrm{~m}$
Q2a Horizontal distance $\overline{D F}=4.5 \times 2=9.0 \mathrm{~m}$
Q2b $\theta=\tan ^{-1}\left(\frac{10}{9}\right) \approx 48^{\circ}>45^{\circ}$, unsafe
Q2c Let $x \mathrm{~m}$ be the horizontal distance from E to F.
$\frac{4}{x}=0.8, x=5 \ldots$. on the map $\overline{E F}=2.5 \mathrm{~cm}$
Q3 $V=\frac{1}{3} x^{2} h, 1.8=\frac{1}{3} x^{2} \times 2.5, x \approx 1.47$
Q4

$\frac{x}{65}=\frac{8}{95+65}, x=3.25, .: \overline{P H}=3.25+4.5=7.75 \mathrm{~m}$

Module 3: Graphs and relations

Q1a $R=65 x$
Q1b $C=500+40 x=500+40 \times 30=1700$ dollars
Q1c

Q1d Read from graph, 20.

Module 4: Business-related mathematics

Q1ai Total amount $=55 \times 48=\$ 2640$

Q1aii Total interest $=2640-2000=\$ 640$
Q1aiii $I=\frac{\operatorname{Pr} T}{100}, 640=\frac{2000 \times r \times 4}{100}, r=8$, i.e. 8%
Q1b Cash price $=2000 \times\left(1+\frac{2.5}{100}\right)\left(1+\frac{2}{100}\right)=\$ 2091$
Q2a Monthly payment $=\frac{I}{12}=\frac{360000 \times 5.2}{100 \times 12}=\$ 1560$

Q2b \$360000
Q3a The same calculation is used to find the interest in the first year for both investments. Simple Saver pays higher annual interest amount than Growth Plus does. .: the Simple Saver's rate is higher than that of Growth Plus.

Q3b Amount of annual interest $=\frac{21800-8000}{15}=\$ 920$

Q3ci $\quad A=P\left(1+\frac{r}{100}\right)^{n}, 24000=8000\left(1+\frac{r}{100}\right)^{15}$
Q3cii $r \approx 7.6$, i.e. 7.6%

Q4ai TVM Solver: Monthly repayment $\approx \$ 1827.32$
Q4aii Total interest amount
$=1827.32 \times 240-250000 \approx \$ 188557$
Q4b TVM Solver: Outstanding principal $\approx \$ 213118$
Q4c TVM Solver: Number of months to repay the $\$ 100000$ loan ≈ 104.
.: number of months to repay the $\$ 250000$ loan
$=12 \times 9+104=212$ months

Module 5: Networks and decision mathematics

Q1a No direct communication
Q1b $f=1, g=0$

Q2a From X to $Y, 4+3+4=11$ minutes
Q2bi Hamiltonian path

Q2bii

Q3a D

Q3bi

Q3c Euler's circuit: all vertices are even. .: bush path connects B and D.

Q4 Use the immediate predecessors to construct the following diagram:

Q4a 2

Q4b Earliest start time for $F=5+4=9$ minutes
Q4c A and C
Q4d Float time for $G=13-9=4$ minutes
Q4e Shortest completion time $=5+6+2+3=16$ minutes

Q4f The critical path is $A-B-D-H$.

落. .

Module 6: Matrices

Q1a $N=\left[\begin{array}{lll}4 & 8 & 2\end{array}\right]$

Q1b $P=N \times G=\left[\begin{array}{lll}4 & 8 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=[26]$
Q1c The total number of points scored by Oscar in the game was 26 .

Q2a The percentage of players in \boldsymbol{H} training is changed to \boldsymbol{M} training from week to week.

Q2b
$\left[\begin{array}{lll}0.5 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.5 \\ 0.3 & 0.3 & 0.4\end{array}\right]\left[\begin{array}{c}90 \\ 150 \\ 60\end{array}\right]=\left[\begin{array}{c}66 \\ 138 \\ 96\end{array}\right]$
66 players
Q2c
$\left[\begin{array}{ccc}0.5 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.5 \\ 0.3 & 0.3 & 0.4\end{array}\right]\left[\begin{array}{c}66 \\ 138 \\ 96\end{array}\right]=\left[\begin{array}{c}\ldots . . \\ 144 \\ \ldots . .\end{array}\right]$
$150-144=6$ fewer players
Q2d After repeated applications of transition matrix T,
$S_{6}, S_{7}, S_{8}, \ldots \ldots=\left[\begin{array}{c}50 \\ 150 \\ 100\end{array}\right]$, i.e. the number of players in each
type of training becomes stable after five weeks.
\therefore the number of players in each type of training becomes stable after seven weeks.

Q3a
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & 3 \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{l}p \\ r \\ a\end{array}\right]=\left[\begin{array}{l}33 \\ 40 \\ 43\end{array}\right]$
Please inform mathline@itute.com re conceptual, mathematical and/or typing errors

Q3b
$\left[\begin{array}{ccc}7 & -1 & -4 \\ -1 & 0 & 1 \\ x & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & 3 \\ 1 & 2 & 1\end{array}\right]^{-1}=\left[\begin{array}{ccc}7 & -1 & -4 \\ -1 & 0 & 1 \\ -5 & 1 & 3\end{array}\right]$
$\therefore x=-5$

Q3c
$\left[\begin{array}{l}p \\ r \\ a\end{array}\right]=\left[\begin{array}{ccc}7 & -1 & -4 \\ -1 & 0 & 1 \\ -5 & 1 & 3\end{array}\right]\left[\begin{array}{l}33 \\ 40 \\ 43\end{array}\right]=\left[\begin{array}{c}\ldots \\ 10 \\ \ldots\end{array}\right]$
$r=10$

