|--|--|--|--|--|--|

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

2010

Trial Examination 2

SECTION 1 Multiple-choice questions

Instructions for Section 1

Answer **all** questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. **No** marks will be given if more than one answer is completed for any question. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1 When the quadratic equation $z^2 - z + 1 = 0$ is solved over *C*,

- A. it has no solutions.
- B. the solutions are $z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$.
- C. the solutions are $z = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$.
- D. the solutions are $z = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}i$.
- E. the solutions are $z = \frac{1}{2} \pm \frac{\sqrt{5}}{2}i$.

Question 2 Given z = -cis(1),

- A. |z| = -1 and Arg(z) = 1.
- B. |z| = 1 and Arg(z) = -1.
- C. |z| = 1 and $Arg(z) = 1 \pi$.
- D. |z| = -1 and $Arg(z) = \pi$.
- E. |z| = 1 and $Arg(z) = \pi 1$.

Question 3 The polynomial $P(z) = z^3 + 2iz^2 + 2z + 4i$ has

- A. no real solutions.
- B. a pair of conjugate roots.
- C. three linear factors over *C*.
- D. three solutions over C.
- E. two real solutions and a complex solution.

Question 4 The straight line on the complex plane shown on the left can be defined by

- A. $\left\{z: Arg(z) = \frac{3\pi}{4}\right\}$.
- B. $\{z: |z-a-ai|-|z|=0\}.$
- C. $\{z: |z-a+ai| = |z|\}.$
- D. $\{z: |z+a-ai|-|z|=0\}$.
- E. $\{z: |z+a+ai| = |z|\}.$

Question 5 The graph of
$$y = x + \frac{b}{x}$$
, where $b \in R \setminus \{0\}$,

- always has two stationary points. A.
- B. always has two asymptotes.
- C. has *R* as its domain.
- D. always has *R* as its range.
- E. has a y-intercept.

Question 6 The graph of $y = \frac{2}{4x^2 + px + q^2}$, where q > 0, has a stationary point when

- A. p < -4q.
- B. p < 0.
- C. $p \ge 0$.
- D. p > q.
- E. p < q.

Question 7
$$\sin\left(a + \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) =$$

- A. $\frac{1}{2}\cos a \frac{\sqrt{3}}{2}\sin a$. B. $-\frac{1}{2}\cos a + \frac{\sqrt{3}}{2}\sin a$. C. $\frac{1}{2}\sin a - \frac{\sqrt{3}}{2}\cos a$. D. $-\frac{1}{2}\sin a + \frac{\sqrt{3}}{2}\cos a$. E. $\sin a + \frac{1}{2}$.

Question 8 The domain of the function $f(x) = \sin^{-1}\left(\frac{x}{a} + b\right) + c$, where $a, b, c \in (-\infty, 0)$, is

- A. [-a(1+b), a(1-b)].B. [-a-b, a-b].C. [-a(1+b)-c, a(1-b)-c].D. [a-b, -a-b].
- E. [a(1-b), -a(1+b)].

Question 9 Let $\tan^{-1} a = 0.3$ and $\tan^{-1} b = 0.2$. In terms of a and/or b, $\tan(0.1) =$

- A. $\frac{a-b}{ab-1}$. B. $\frac{a-b}{1-ab}$. C. $\frac{\sqrt{1+b^2}-1}{b}$. D. $\frac{\sqrt{1+b^2}+1}{b}$. E. a-b.
- Question 10 When $\pi < \theta < \frac{3\pi}{2}$, $\cos^{-1}(\cos\theta) =$ A. θ . B. $\pi - \theta$. C. $2\pi - \theta$. D. $\theta - 2\pi$. E. $\theta - \pi$.

Question 11 $-2\tilde{i}+3\tilde{k}$, $\tilde{j}-2\tilde{k}$ and which one of the following vectors are linearly independent?

A. $2\tilde{i} - \tilde{j} - \tilde{k}$ B. $4\tilde{i} - 3\tilde{j}$ C. $3\tilde{i} - 4\tilde{j}$ D. $6\tilde{i} - 2\tilde{j} - 5\tilde{k}$ E. $2\tilde{i} - 2\tilde{j} + \tilde{k}$

Question 12 A, B and P are points on a **unit** circle centred at O. Given $\overrightarrow{AO}.\overrightarrow{BO} = \frac{1}{2}$ and $\overrightarrow{AP}.\overrightarrow{BP} = \sqrt{3}$, the value of $|\overrightarrow{AP}||\overrightarrow{BP}|$ is A. 0.6 B. 0.8 C. 1 D. 2 E. 3 **Question 13** Point *Q* divides the line segment joining point P(-1,0,2) and point R(2,1,-2) into a ratio of 2 : 3. The distance of point *Q* from the origin O(0,0,0) is

A. $\frac{\sqrt{29}}{5}$. B. $\sqrt{29}$. C. $\frac{\sqrt{29}}{6}$. D. $\frac{1}{2}$. E. $\frac{3}{5}$.

Question 14 The angles that $\frac{\sqrt{3}}{2}\tilde{i} - \frac{1}{\sqrt{2}}\tilde{j} - \frac{1}{2}\tilde{k}$ makes with the *x*, *y* and *z* axes are respectively

- A. 30°, 45° and 60°.
- B. 30°, 135° and 120°.
- C. 30°, -45° and -60°.

D.
$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
, $-\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ and $-\cos^{-1}\left(\frac{1}{\sqrt{6}}\right)$.

E.
$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
, $\cos^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ and $\cos^{-1}\left(-\frac{1}{\sqrt{6}}\right)$.

Question 15 Which one of the following statements is **true** about a particle with velocity $\tilde{v} = 2\cos^{-1}(t)\tilde{i} - 3\cos^{-1}(t)\tilde{j} + \cos^{-1}(t)\tilde{k}$, $0 \le t \le 1$.

- A. The speed of the particle increases with time *t*.
- B. The particle moves in a straight line.
- C. The particle moves with constant acceleration.
- D. The distance of the particle from its initial position decreases with time t.
- E. The initial speed of the particle is $\sqrt{14}$.

Question 16 If $\frac{dy}{dh} = \sqrt{y(2-y)}\frac{dx}{dh}$, y may be expressed in terms of x as

- A. $y = \sin(x+2) + 1$
- B. $y = \sin(x+3) 1$
- C. $y = \sin(x-1)$
- D. $y = \sin(2x 1) + 1$
- E. $y = \sin(3x 1) 1$

Question 17 The *displacement*-time graph of a particle travelling along the *x*-axis is shown below.

Initially the particle is at x = 2. The particle is at x = 0 when

A. t = 0. t = 1.4. C. t = 5.6. D. t = 7. B. E. t = 8.

Question 18 The velocity-time graph $(0 \le t \le 9)$ of a particle is shown below.

The particle is furthest from its initial position when

C. t = 7. E. its acceleration is zero. A. t = 0. B. t = 3.5. D. t = 9.

Free download and print from www.itute.com

6

Question 19 Using a suitable substitution, $\int_{0}^{\frac{\pi}{2}} \cos^3 x \sqrt{1 - \sin x} dx$ may be expressed completely in terms of *u* as

A. $\int_{0}^{1} (2u^{\frac{3}{2}} - u^{\frac{5}{2}}) du$ B. $\int_{0}^{1} (-2u^{\frac{3}{2}} + u^{\frac{5}{2}}) du$ C. $\int_{0}^{\sin^{-1}(u)} (2u^{\frac{3}{2}} - u^{\frac{5}{2}}) du$ D. $\int_{0}^{\sin^{-1}(u)} (-2u^{\frac{3}{2}} + u^{\frac{5}{2}}) du$ E. $\int_{\cos^{-1}(0)}^{1} (-2u^{\frac{3}{2}} + u^{\frac{5}{2}}) du$

Question 20 An object slides down an inclined plane ($\mu = 0.2$). The object moves at constant speed when the inclined plane is at an angle of θ° with the horizontal. The value of θ

- A. depends on the mass of the object.
- B. depends on the speed of the object.
- C. on earth is different from the value of θ on the moon.
- D. is approximately 11.
- E. is indeterminable without further information.

Question 21 A particle moves along the *x*-axis. Its velocity is given by $v = -\sqrt{100 - x}$. Which one of the following statements is **NOT** true?

- A. The particle has a constant acceleration.
- B. The particle has a negative acceleration.
- C. The particle speeds up.
- D. The particle slows down.
- E. The particle continues to move in the same direction.

Question 22 The floor of a lift is an inclined plane (10° to the horizontal). A 10-kg object is at rest on the floor whilst the lift is stationary. When the lift moves downwards with speed increasing at 1 m/s in a second, the reaction force of the floor on the object is

- A. 86.7 N perpendicular to the floor.
- B. 88 N vertically upward.
- C. 88 N perpendicular to the floor.
- D. 96.5 N perpendicular to the floor.
- E. 98 N vertically upward.

SECTION 2 Extended-answer questions

Instructions for Section 2

Answer all questions.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1

a. Show that the equations of the two dotted intersecting lines are $y = \pm (2 + \sqrt{3})x$.

b. A hyperbola has the dotted lines as its asymptotes and $y = \pm(\sqrt{3} + 1)$ as its *y*-intercepts. Determine the equation of the hyperbola.

c. Sketch accurately the graph of the hyperbola showing the important features on the axes below.

Let *O* be the origin (0,0). \overrightarrow{OA} is the position vector of moving point *A* which lies on the dotted line with positive gradient, and \overrightarrow{OB} is the position vector of moving point *B* which lies on the dotted line with negative gradient. The unit vectors \tilde{i} and \tilde{j} are in the positive *x* and *y* directions respectively.

d i. Given the *x*-coordinates of *A* and *B* are *a* and *b* respectively, express \overrightarrow{OA} and \overrightarrow{OB} in terms of *a*, *b*, \widetilde{i} and \widetilde{j} .

2 marks

d ii. Hence determine the position vector \overrightarrow{OM} in terms of a, b, \tilde{i} and \tilde{j} , where M is the mid-point of \overline{AB} .

1 mark

d iii. Given
$$|\overrightarrow{BA}| = 2$$
, show that $(2 + \sqrt{3})^2 (a + b)^2 + (a - b)^2 = 4$. 1 mark

d iv. Hence show that the locus of point *M* is an ellipse when *a* and *b* are varied and the condition $|\overrightarrow{BA}| = 2$ is satisfied.

d v. Sketch accurately the graph of the ellipse showing the important features on the axes below.

1 mark

d vi. Find the values of *b* (correct to three decimal places) when a = 0.500. Hence draw accurately the line segment \overline{AB} on the axes above, with *B* in the second quadrant. Mark the point *M* and label the ends of line segment \overline{AB} .

Question 2 Consider $f(z) = z^3 - 6iz^2 - 12z + 7i$.

a i. Express
$$f(z)$$
 in the form $(z-a)^3 + b$, where $a, b \in C$.

a ii. Sketch $\{z: |z-2i|=1\}$ on the argand diagram below.

a iii. Hence sketch the roots of f(z) = 0 on the argand diagram above.

a iv. Determine the roots of f(z) = 0 in exact x + yi form.

1 mark

2 marks

b. Determine the roots of $-iz^3 - 6z^2 + 12iz + 7 = 0$.

c. Let g(z) = f(z) - 7i. Sketch the roots of g(z) = 0 on the argand diagram above. Describe the locations of the roots of g(z) = 0 in relation to the locations of the roots of f(z) = 0.

Question 3

A slope field of the differential equation $\frac{dy}{dx} = \sin^{-1}\left(\frac{x}{2}\right) + \log_e\left(\frac{x+2}{2}\right)$ is shown below. The graph of a particular solution of the differential equation passes through the point (1,1).

a.

b i. On the slope field above sketch the graph of the particular solution of the differential equation.

2 marks

b ii. Hence estimate the value of y (correct to one decimal place) when x = 1.5. 1 mark

c. Divide the section from x = 1 to x = 1.5 into two equal intervals. Given y = 1 when x = 1, by Euler's method (first-order approximation) find the approximate value of y (correct to two decimal places) when x = 1.5.

2 marks

d i. Given y = 1 when x = 1, a numerical solution of $\frac{dy}{dx} = \sin^{-1}\left(\frac{x}{2}\right) + \log_e\left(\frac{x+2}{2}\right)$ when x = 1.5 can be found by evaluation of a definite integral. Write down this definite integral.

1 mark

d ii. Hence find the value of y (correct to two decimal places) when x = 1.5. 1 mark

Question 4

Consider
$$f(x) = \frac{x}{\sqrt{p^2 - x^2}} + q$$
, where $p, q \in R^+$.

a. Sketch the graph of f(x) on the axes below. Show and label the axis-intercept(s) and asymptote(s) in terms of p and q.

Now let $p = \sqrt{3}$ and $q = \sqrt{3}$.

b. Without using CAS or calculator show that the area of the region bounded by the graph of f(x), the x-axis and $x = \frac{3}{2}$ is $3\sqrt{3}$.

c i. The region specified in part **b.** is rotated about the *x*-axis to form a solid of revolution with volume *V*. Write a definite integral for finding V.

1 mark

1 mark

A container (wall of negligible thickness) in the shape of the solid in **c** i. is filled with water at a rate of 0.5 cm³ per second. Linear measurements are in cm.

d. Use calculus to find the volume of water (in terms of *h* in cm³) in the container when x = h, where $-1.5 \le h \le 1.5$.

4 marks

e. Find the exact rate of increase (cm per second) in the depth of water when h = 0. 2 marks

Question 5

The speed of a cyclist (total mass 85 kg) travelling along a straight road is $v = \frac{1}{2} \tan^{-1}(5t + 2.5) + \frac{\pi}{2}$ m/s, $t \ge 0$. A car (total mass 1200 kg) travels in the same direction at constant speed of 20 m/s. The car passes the cyclist at t = 0. Two seconds later the car slows down and its speed is given by $v = \frac{20}{1 + 0.5(t - 2)^4}$ m/s, $t \ge 2$.

a. Determine the initial speed and acceleration of the cyclist correct to three decimal places. 3 marks

b. Determine the resultant force on the cyclist at t = 0. Give your answer correct to the nearest newton.

1 mark

c. Determine the difference in initial momentum of the cyclist and the car. Give your answer correct to the nearest kg m/s.

1 mark

d. Sketch the speed-time graphs for the cyclist and the car on the same axes below. Show and label intercept(s) and asymptote(s).

e. Determine whether the cyclist or the car is ahead at t = 10 s. Find the distance between the cyclist and the car at t = 10 s. Give your answer correct to the nearest metre.

2 marks

4 marks

f. Determine the time when the cyclist and the car are next to each other. Give your answer correct to the nearest second.

2 marks

© Copyright itute.com 2010