1. Find $\sqrt[3]{1+i}$. Write your answers in polar form.	2. Change your answers in Q1 to exact $x+y i$ form.
3. Find $\sqrt[8]{-1}$. Write your answers in polar form.	4. Change $\operatorname{cis} \frac{\pi}{8}$ to exact $x+y i$ form.
5. Use the conjugate root theorem and the fundamental theorem of algebra to explain why $a z^{3}+b z^{2}+c z+d$ has at least one real root for $a, b, c, d \in R$.	6. Show that $z-1+i$ is a factor of $z^{3}+2 z^{2}-6 z+8$. Find the other factors.
7. Find the roots of $z^{3}+z^{2}+z$.	8. Solve $2 z^{3}-3 z^{2}+4 z-6=0$.
9. Given $z-1-i$ is a factor of $P(z)=z^{3}+p z+q$, find p and $q \in R$. Hence solve $P(z)=0$.	10. Consider $z=a+i b$, find a and b such that $z^{2}=i$. Hence solve $z^{4}=-1$.
Numerical, algebraic and worded answers. 1. $2^{1 / 6} \operatorname{cis}(\pi / 12), 2^{1 / 6} \operatorname{cis}(3 \pi / 4), 2^{1 / 6} \operatorname{cis}(-7 \pi / 12)$ 2. $2^{-4 / 3}(1+\sqrt{ } 3)-2^{-4 / 3}(1-\sqrt{ } 3) i,-2^{-1 / 3}+i 2^{-1 / 3}, 2^{-4 / 3}(1-\sqrt{ } 3)-2^{-4 / 3}(1+\sqrt{ } 3) i$ 3. $\operatorname{cis}(-7 \pi / 8), \operatorname{cis}(-5 \pi / 8), \operatorname{cis}(-3 \pi / 8), \operatorname{cis}(-\pi / 8), \operatorname{cis}(\pi / 8), \operatorname{cis}(3 \pi / 8), \operatorname{cis}(5 \pi / 8)$, 4. $\sqrt{ }(2+\sqrt{ } 2) / 2+i / \sqrt{ }(4+2 \sqrt{ } 2)$ 5. Cubic polynomial has 3 roots (FTofA). For real coefficients, either all roots 6. $z-1-i, z+4$ 7. $0,-1 / 2-i \sqrt{ } 3 / 2,-1 / 2+i \sqrt{ } 3 / 2$ 8. $z=3 / 2, i \sqrt{ } 2,-i \sqrt{ } 2$ 9. $p=-2, q=4, z=-2,1+i, 1-i$ 10. $a= \pm 1 / \sqrt{ } 2$ and $b= \pm 1 / \sqrt{ } 2, z=1 / \sqrt{ } 2+1 / \sqrt{ } 2 i,-1 / \sqrt{ } 2-1 / \sqrt{ } 2 i, 1 / \sqrt{ } 2-1 / \sqrt{ } 2 i,-$	(7 718) re real, or a pair of complex conjugate roots +1 real root (CRT). $/ \sqrt{2}+1 / \sqrt{ } 2 i$

